Skip to main content

Combined Phylogenetic Analysis in Echinocereus (Cactaceae), the Use of Morphology, and Taxonomic Implications

  • Chapter
  • First Online:
Biodiversity and Chemotaxonomy

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 24))

Abstract

Phylogenies based on molecular characters has dominated publications rather than those based on morphological characters. Some authors have defended the use of morphology in phylogenetic reconstruction. In Cactaceae few studies have been made combining molecular and morphological characters. A good example about the use of morphology in phylogenetic analysis has been addressed in Echinocereus. Echinocereus is a morphologically diverse genus including 67 species that have been grouped into eight taxonomic sections based on morphological traits. Previous molecular phylogenetic analyses did not show entirely the relationships in Echinocereus species, and did not provide useful characters to recognize clades. Therefore, we performed a combined phylogenetic analysis with a set of 44 morphological characters and six chloroplast DNA sequences. Topologies from parsimony and Bayesian analyses resulted mostly congruent. However, relationships of E. poselgeri did not agree between analyses. A second bayesian analysis using long-branch extraction test resulted in a topology with a morphologically congruent position of E. poselgeri. Parsimony and Bayesian analyses corroborated the monophyly of Echinocereus, which included eight monophyletic groups. The clades did not recover the recent infrageneric classification. As a consequence, a new sectional classification for Echinocereus is proposed based on the eight recovered clades, which are supported by a combination of morphological and molecular characters. An identification key for sections in the genus is included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agnarsson I, Miller JA (2008) Is ACCTRAN better than DELTRAN? Cladistics 24:1032–1038

    Article  PubMed  Google Scholar 

  • Albesiano S, Terrazas T (2012) Cladistic analysis of Trichocereus (Cactaceae: Cactoideae: Trichocereeae) based on morphological data and chloroplast DNA sequences: dedicated to Omar Emilio Ferrari (1936–2010). Haseltonia 17:3–23

    Article  Google Scholar 

  • Anderson EF (2001) The cactus family. Timber Press, Portland

    Google Scholar 

  • Arias S, Terrazas T, Arreola-Nava HJ et al (2005) Phylogenetic relationships in Peniocereus (Cactaceae) inferred from plastid DNA sequence data. J Plant Res 118:317–328

    Article  CAS  PubMed  Google Scholar 

  • Assis L (2009) Coherence, correspondence, and the renaissance of morphology in phylogenetic systematics. Cladistics 25:528–544

    Article  PubMed  Google Scholar 

  • Assis L, Rieppel O (2011) Are monophyly and synapomorphy the same or different? Revisiting the role of morphology in phylogenetics. Cladistics 27:94–102

    Article  PubMed  Google Scholar 

  • Alves RJV, Machado MD (2007) Is classical taxonomy obsolete? Taxon 56:287–288

    Article  Google Scholar 

  • Baker M (2006a) A new florally dimorphic hexaploid, Echinocereus yavapaiensis sp. nov. (section Triglochidiatus, Cactaceae) from central Arizona. Plant Syst Evol 258:63–83

    Article  Google Scholar 

  • Baker M (2006b) Circumscription of Echinocereus arizonicus subsp. arizonicus, Phenetic analysis of morphological characters in section Triglochidiatus (Cactaceae) part II.Madroño 53:388–399

    Article  Google Scholar 

  • Bárcenas RT, Yesson C, Hawkins JA (2011) Molecular systematics of the Cactaceae. Cladistics 27:470–489

    Article  PubMed  Google Scholar 

  • Berger A (1926) Die entwicklungslinien der Kakteen. Fisher, Jena

    Google Scholar 

  • Bergsten J (2005) A review of long-branch attraction. Cladistics 21:163–193

    Article  PubMed  Google Scholar 

  • Blum W, Felix D, Bauer H (2012) Echinocereus Die Sektion Echinocereus. Der Echinocereenfreund 25:1–336

    Google Scholar 

  • Blum W, Felix D, Waldeis D (2008) Echinocereus Die Sektion Wilcoxia. Der Echinocereenfreund 21:1–142

    Google Scholar 

  • Blum W, Lang M, Rischer M, Rutow J (1998) Echinocereus, Monographie. Selbstverlag, Aachen

    Google Scholar 

  • Bollback JP (2006) SIMMAP: stochastic character mapping of discrete traits on phylogenies. BMC Bioinform 7:88

    Google Scholar 

  • Bravo-Hollis H, Sánchez-Mejorada H (1991) Las Cactáceas de México [The cacti of Mexico], vol 2. Universidad Nacional Autónoma de México, Ciudad de México

    Google Scholar 

  • Britton NL, Rose JN (1919) The Cactaceae, vol 1. Carnegie Institution of Washington, Washington

    Google Scholar 

  • Britton NL, Rose JN (1920) The Cactaceae, vol 2. Carnegie Institution of Washington, Washington

    Google Scholar 

  • Britton NL, Rose JN (1922) The Cactaceae, vol 3. Carnegie Institution of Washington, Washington

    Google Scholar 

  • Britton NL, Rose JN (1923) The Cactaceae, vol 4. Carnegie Institution of Washington, Washington

    Google Scholar 

  • Brown JM, Thomson RC (2017) Bayes factors unmask highly variable information content, bias, and extreme influence in phylogenomic analyses. Syst Biol 66:517–530

    PubMed  Google Scholar 

  • Butterworth CA, Cota-Sanchez JH, Wallace RS (2002) Molecular systematics of tribe Cacteae (Cactaceae: Cactoideae): a phylogeny based on rpl16 intron sequence variation. Syst Botany 27:257–270

    Google Scholar 

  • Buxbaum F (1951) Morphology of cacti, section I: root and stems. Abbey Garden Press, Pasadena

    Google Scholar 

  • Buxbaum F (1953) Morphology of cacti, section II: flower. Abbey Garden Press, Pasadena

    Google Scholar 

  • Buxbaum F (1955) Morphology of cacti, section III: fruits and seeds. Abbey Garden Press, Pasadena

    Google Scholar 

  • Buxbaum F (1958) The phylogenetic division of the subfamily Cereoideae, Cactaceae. Madroño 14:177–206

    Google Scholar 

  • Calvente A, Zappi DC, Forest F et al (2011) Molecular phylogeny of tribe Rhipsalideae (Cactaceae) and taxonomic implications for Schlumbergera and Hatiora. Mol Phylogenet Evo 58:456–468

    Article  Google Scholar 

  • Cota JH (1993) Pollination syndromes in the genus Echinocereus: a review. Cact Succ J (US) 65:19–26

    Google Scholar 

  • Cruz MÁ, Arias S, Terrazas T (2016) Molecular phylogeny and taxonomy of the genus Disocactus (Cactaceae), based on the DNA sequences of six chloroplast markers. Willdenowia 46:145–164

    Article  Google Scholar 

  • Cunningham WC, Omland KE, Oakley TH (1998) Reconstructing ancestral characters states: a critical reappraisal. Trends Ecol Evol 13:361–366

    Article  CAS  PubMed  Google Scholar 

  • Darriba D, Taboada GL, Doallo R et al (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Carvalho MR (1996) Higher-level elasmobranch phylogeny, basal squaleans, and paraphyly. In: Stiassny MLJ, Parenti LR, Johnson GD (eds) Interrelationships of Fishes 3. Academic Press, San Diego, pp 593–660

    Google Scholar 

  • De Pinna MG (1991) Concepts and tests of homology in the cladistic paradigm. Cladistics 7:367–394

    Article  Google Scholar 

  • de Queiroz A, Donoghue MJ, Kim J (1995) Separate versus combined analysis of phylogenetic evidence. Ann Rev EcolSyst 26:657–681

    Article  Google Scholar 

  • Delsuc F, Henner B, Hervé P (2005) Phylogenomics and the reconstruction of the tree of life. Nat Rev Genet 6:361

    Article  CAS  PubMed  Google Scholar 

  • Demaio PH, Barfuss MH, Kiesling R et al (2011) Molecular phylogeny of Gymnocalycium (Cactaceae): Assessment of alternative infrageneric systems, a new subgenus, and trends in the evolution of the genus. Am J Bot 98:1841–1854

    Article  PubMed  Google Scholar 

  • Edwards EJ, Nyffeler R, Donoghue MJ (2005) Basal cactus phylogeny, implications of Pereskia (Cactaceae) paraphyly for the transition to the cactus life form. Am J Bot 92:1177–1188

    Article  PubMed  Google Scholar 

  • Endler J, Buxbaum F (1974) Die Pflanzenfamilie der Kakteen, 3rd edn. A. Philler Verlag, Miden

    Google Scholar 

  • Engelmann G (1848) Botanical appendix. In: Wislizenus FA (ed) Memoir of a tour to Northern Mexico, connected with Col. Doniphan’s Expedition, in 1846 and 1847, Tippin and Streeper, Washington, pp 87–115

    Google Scholar 

  • Farris J (1979) The information content on the phylogenetic system. Syst Zool 28:483–519

    Article  Google Scholar 

  • Fuentes M (2004) Anatomía floral de algunas especies de Pachycereeae (Cactaceae) [Floral anatomy of some Pachycereeae species] (Unpublished bachelor dissertation). Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla

    Google Scholar 

  • Gibson AC (1973) Comparative anatomy of secondary xylem in Cactoideae (Cactaceae). Biotropica 5:29–65

    Article  Google Scholar 

  • Gibson AC, Nobel PS (1986) The cactus primer. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Goloboff PA, Farris J, Nixon K (2008) T.N.T. Tree analysis using new technology. Cladistics 24:774–786

    Article  Google Scholar 

  • Guerrero PC, Arroyo MTK, Bustamante RO et al (2011) Phylogentics and predictive distribution modeling provide insights into the divergence of Eriosyce subgen. Neoporteria (Cactaceae). Plant Syst Evol 297:113–128

    Article  Google Scholar 

  • Hernández-Hernández T, Hernández HM, De-Nova JA et al (2011) Phylogenetic relationships and evolution of growth form in Cactaceae (Caryophyllales, Eudicotyledoneae). Am J Bot 98:44–61

    Article  PubMed  Google Scholar 

  • Hernández-Ledesma P, Bárcenas RT (2017) Phylogenetic utility of the trnH–psbA IGR and stem-loop diversity of the 3′ UTR in Cactaceae (Caryophyllales). Plant Syst Evol 1–17

    Google Scholar 

  • Hughes CE, Lewis GP, Yomona AD et al (2004) Maraniona. A new dalbergioid legume genus (Leguminosae, Papilionoideae) from Peru. Syst Bot 29:366–374

    Article  Google Scholar 

  • Hunt DR (2012) Taxonomic implications of DNA studies relating to Cactaceae subfam. Cactoideae. Bull Int Cactaceae Syst Group 26:3–20

    Google Scholar 

  • Hunt DR (2016) CITES Cactaceae checklist, 3rd edn. DH Books, Milborne Port

    Google Scholar 

  • Hunt DR, Taylor NP, Charles G (2006) The new cactus lexicon. DH Books, Milborne Port

    Google Scholar 

  • Jenner R (2004) Accepting partnership by submission? Morphological phylogenetics in a molecular millenium. Syst Biol 53:333–342

    Article  PubMed  Google Scholar 

  • Kluge AG (1989) A concern for evidence and phylogenetic hypothesis for relationships among Epicrates (boide, Serpentes). Syst Zool 38:1–25

    Article  Google Scholar 

  • Knopf P, Schulz C, Little DP et al (2012) Relationships within Podocarpaceae based on DNA sequence, anatomical, morphological, and biogeographical data. Cladistics 28:271–299

    Article  PubMed  Google Scholar 

  • Kolaczkowski B, Thornton JW (2009) Long-branch attraction bias and inconsistency in Bayesian phylogenetics. PLoS ONE 4:e7891

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Korotkova N, Borsch T, Arias S (2017) A phylogenetic framework for the Hylocereeae (Cactaceae) and implications for the circumscription of the genera. Phytotaxa 327:1–46

    Article  Google Scholar 

  • Korotkova N, Borsch T, Quandt D et al (2011) What does it take to resolve relationships and to identify species with molecular markers? An example from the epiphytic Rhipsalideae (Cactaceae). Am J Bot 98:1549–1572

    Article  PubMed  Google Scholar 

  • Larridon I, Walter HE, Guerrero PC et al (2015) An integrative approach to understanding the evolution and diversity of Copiapoa (Cactaceae), a threatened endemic Chilean genus from the Atacama Desert. Am J Bot 102:1506–1520

    Article  PubMed  CAS  Google Scholar 

  • Lartillot N, Brinkmann H, Philippe H (2007) Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model. BMC EvolBiol 7:S4

    Article  CAS  Google Scholar 

  • Lartillot N, Philippe H (2004) A bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol Biol Evol 21:1095–1109

    Article  CAS  PubMed  Google Scholar 

  • Lewis PO (2001) A likelihood approach to estimating phylogeny from discrete morphological character data. Syst Biol 50:913–925

    Article  CAS  PubMed  Google Scholar 

  • Loza-Cornejo S, Terrazas T (1996) Anatomía del tallo y raíz de dos especies de Wilcoxia Britton & Rose (Cactaceae) del noreste de México. Bol Soc Bot México 59:13–23

    Google Scholar 

  • Luna E, Mishler BD (1996) El concepto de homología filogenética y la selección de caracteres taxonómicos. Bol Soc Bot México 59:131–146

    Google Scholar 

  • Majure LC, Puente R, Griffith MP et al (2012) Phylogeny of Opuntia s.s. (Cactaceae): clade delineation, geographic origins, and reticulate evolution. Am J Bot 99:847–864

    Article  CAS  PubMed  Google Scholar 

  • Nixon KC (2002) WinClada, version 1.00. 08. Ithaca, NY

    Google Scholar 

  • Nixon KC, Carpenter JM (1996) On simultaneous analysis. Cladistics 12:221–241

    Article  PubMed  Google Scholar 

  • Nixon KC, Carpenter JM (2000) On the other “phylogenetic systematics”. Cladistics 16:298–318

    PubMed  Google Scholar 

  • Nixon KC, Ochoterena H (2000) Taxonomía tradicional, cladística y construcción de hipótesis filogenéticas. In: Hernández HM, García Aldrete AN, Álvarez F et al (eds) Enfoques contemporáneos para el estudio de la biodiversidad. Universidad Nacional Autónoma de México & Fondo de Cultura Económica, Ciudad de México, pp 15–37

    Google Scholar 

  • Norup MV, Dransfield J, Chase MW et al (2006) Homoplasious character combinations and generic delimitation: a case study from the Indo-Pacific arecoid palms (Arecaceae: Areceae). Am J Bot 93:1065–1080

    Article  CAS  PubMed  Google Scholar 

  • Nyffeler R (2002) Phylogenetic relationship in the cactus family (Cactaceae) based on evidence from trnK/matK and trnL-trnF sequences. Am J Bot 89:312–326

    Article  CAS  PubMed  Google Scholar 

  • Nyffeler R, Eggli U (2010) A farewell to dated ideas and concepts: molecular phylogenetics and revised suprageneric classification of the family Cactaceae. Schumannia 6:1–42

    Google Scholar 

  • Nylander JAA, Ronquist F, Huelsenbeck JP et al (2004) Bayesian phylogenetic analysis of combined data. Syst Biol 53:47–67

    Article  PubMed  Google Scholar 

  • Ochoterena H (2009) Homology in coding and non-coding DNA sequences, a parsimony perspective. Plant Syst Evol 282:151–168

    Article  CAS  Google Scholar 

  • Patterson C (1982) Morphological characters and homology. Problems of phylogenetic reconstruction. Academic Press, London

    Google Scholar 

  • Pol D, Siddall ME (2001) Biases in maximum likelihood and parsimony, a simulation approach to a 10-taxon case. Cladistics 17:266–281

    Article  PubMed  Google Scholar 

  • Richards R (2003) Character individuation in phylogenetic inference. Philo Sci 70:264–279

    Article  Google Scholar 

  • Rindal E, Brower AV (2011) Do model-based phylogenetic analyses perform better than parsimony? A test with empirical data. Cladistics 27:331–334

    Article  PubMed  Google Scholar 

  • Ritz CM, Martins L, Mecklenburg R et al (2007) The molecular phylogeny of Rebutia (Cactaceae) and its allies demonstrates the influence of paleogeography on the evolution of South American Mountain cacti. Am J Bot 94:1321–1332

    Article  CAS  PubMed  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MRBAYES 3, Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Sánchez D, Arias S, Terrazas T (2013) Análisis morfométrico de las especies de Echinocereus sección Triglochidiati (Cactaceae) en México. Brittonia 65:368–385

    Article  Google Scholar 

  • Sánchez D, Arias S, Terrazas T (2014) Phylogenetic relationships in Echinocereus (Cactaceae, Cactoideae). Syst Bot 39:1183–1196

    Article  Google Scholar 

  • Sánchez D, Grego-Valencia D, Terrazas T et al (2015) How and why does the areole meristem move in Echinocereus (Cactaceae)? Ann Bot 115:19–26

    Article  PubMed  Google Scholar 

  • Sánchez D, Terrazas T, Grego-Valencia D, Arias S (2018) Phylogeny in Echinocereus (Cactaceae) based on morphological and molecular evidence: taxonomic implications. Syst Biodivers 1:28–44

    Article  Google Scholar 

  • Schlumpberger BO, Renner SS (2012) Molecular phylogenetics of Echinopsis (Cactaceae), polyphyly at all levels and convergent evolution of pollination modes and growth forms. Am J Bot 99:1335–1349

    Article  PubMed  Google Scholar 

  • Schumann K (1899) Gesamtbeschreibung der Kakteen. Neudamm, Berlin

    Book  Google Scholar 

  • Scotland RW, Olmstead RG, Bennett JR (2003) Phylogeny reconstruction, the role of morphology. Syst Biol 52:539–548

    Article  PubMed  Google Scholar 

  • Simmons MP, Ochoterena H, Carr TG (2001) Incorporation, relative homoplasy, and effect of gap characters in sequence-based phylogenetic analyses. Syst Biol 50:454–462

    Article  CAS  PubMed  Google Scholar 

  • Smith ND, Turner AH (2005) Morphology’s role in phylogeny reconstruction: perspectives from paleontology. Syst Biol 54:166–173

    Article  PubMed  Google Scholar 

  • Tapia HJ, Bárcenas-Argüello ML, Terrazas T et al (2018) Phylogeny and Circumscription of Cephalocereus (Cactaceae) based on molecular and morphological evidence. Syst Bot 42:709–723

    Article  Google Scholar 

  • Taylor NP (1985) The genus Echinocereus. Kew Magazine Monograph, Middlesex

    Google Scholar 

  • Taylor NP (1993) Ulteriori studi su Echinocereus. Piante Grasse 13:79–96

    Google Scholar 

  • Vargas-Luna MD, Hernández-Ledesma P, Majure LC et al (2018) Splitting Echinocactus: morphological and molecular evidence support the recognition of Homalocephala as a distinct genus in the Cacteae. PhytoKeys 111:31–59

    Article  Google Scholar 

  • Vázquez-Sánchez M, Sánchez D, Terrazas T et al (2019) Polyphyly at the iconic cactus genus Turbinicarpus (Cactaceae) and its generic circumscription. Bot J Linean Soc 190:405–420

    Article  Google Scholar 

  • Vázquez-Sánchez M, Terrazas T (2011) Stem and wood allometric relationships in Cacteae (Cactaceae). Trees 25:755–767

    Article  Google Scholar 

  • Vázquez-Sánchez M, Terrazas T, Arias S et al (2013) Molecular phylogeny, origin and taxonomic implications of the tribe Cacteae (Cactaceae). Syst Biodivers 11:103–116

    Article  Google Scholar 

  • Walker JF, Yang Y, Feng T et al (2018) From cacti to carnivores: improved phylotranscriptomic sampling and hierarchical homology inference provide further insight into the evolution of Caryophyllales. Am J Bot 105:446–462

    Article  PubMed  Google Scholar 

  • Wallace RS (1995) Molecular systematic study of the Cactaceae: using chloroplast DNA variation to elucidate cactus phylogeny. Bradleya 13:1–12

    Article  Google Scholar 

  • Wallace RS, Gibson AC (2002) Evolution and systematics. In: Nobel PS (ed) Cacti biology and uses. University of California Press, Berkeley, pp 1–21

    Google Scholar 

  • Wheeler QD (2004) Taxonomic triage and the poverty of phylogeny. Philos Trans Royal Soc B: Biol Sci 359:571–583

    Article  Google Scholar 

  • Wiley EO, Lieberman BS (2011) Phylogenetics: theory and practice of phylogenetic systematics. Wiley, Hoboken

    Book  Google Scholar 

  • Winther RG (2009) Character analysis in cladistics: abstraction, reification and the search for objectivity. Acta Biotheor 57:129–162

    Article  PubMed  Google Scholar 

  • Wipfler B, Pohl H, Yavorskaya MI et al (2016) A review of methods for analysing insect structures—the role of morphology in the age of phylogenomics. Curr Opin Insect Sci 18:60–68

    Article  PubMed  Google Scholar 

  • Wortley AH, Rudall PJ, Harris DJ et al (2005) How much data are needed to resolve a difficult phylogeny? Case study in Lamiales. Syst Biol 54:697–709

    Article  PubMed  Google Scholar 

  • Wortley AH, Scotland RW (2006) The effect of combining molecular and morphological data in published phylogenetic analyses. Syst Biol 55:677–685

    Article  PubMed  Google Scholar 

  • Yang Y, Moore MJ, Brockington SF et al (2015) Dissecting molecular evolution in the highly diverse plant clade Caryophyllales using transcriptome sequencing. Mol Biol Evol 32:2001–2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvador Arias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sánchez, D., Arias, S., Vázquez-Sánchez, M., Terrazas, T. (2019). Combined Phylogenetic Analysis in Echinocereus (Cactaceae), the Use of Morphology, and Taxonomic Implications. In: Ramawat, K. (eds) Biodiversity and Chemotaxonomy. Sustainable Development and Biodiversity, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-030-30746-2_11

Download citation

Publish with us

Policies and ethics