Skip to main content

The Nutrition Assessment of Metabolic and Nutritional Balance

  • Chapter
  • First Online:
Integrative and Functional Medical Nutrition Therapy

Abstract

Integrative and functional nutrition recognizes that core clinical imbalances arise from diet, environmental factors, toxins, genetic differences in enzyme function, digestion, absorption, assimilation, inflammation, immune function, infection, and physical activity. These parameters must be considered when determining individual biochemical needs. Judicious use of specialized diets and supplements may improve the biochemical function of the body, but interventions need to be reassessed to keep the body in nutritional balance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gonzalez MJ, Miranda Massari JR. Metabolic correction: a functional explanation of orthomolecular medicine. J Orthomole Med. 2012;27(1):13–20.

    Google Scholar 

  2. Heaney RP. Guidelines for optimizing design and analysis of clinical studies of nutrient effects. Nutr Rev. 2014;72(1):48–54.

    Article  PubMed  Google Scholar 

  3. Rosanoff A, Dai Q, Shapses SA. Essential nutrient interactions: does low or suboptimal magnesium status interact with vitamin D and/or calcium status? Adv Nutr. 2016;7(1):25–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Arslan N. Obesity, fatty liver disease and intestinal microbiota. World J Gastroenterol. 2014;20(44):16452–63. https://doi.org/10.3748/wjg.v20.i44.16452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rashid T, Ebringer A. Autoimmunity in rheumatic diseases is induced by microbial infections via crossreactivity or molecular mimicry. Autoimmun Dis. 2012;2012:539282.

    Google Scholar 

  6. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–63.

    Article  CAS  PubMed  Google Scholar 

  7. El-Salhy M, Ystad SO, Mazzawi T, Gundersen D. Dietary fiber in irritable bowel syndrome (review). Int J Mol Med. 2017;40(3):607–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kieffer DA, Martin RJ, Adams SH. Impact of dietary fibers on nutrient management and detoxification organs: gut, liver, and kidneys. Adv Nutr. 2016;7(6):1111–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Navarro SL, Neuhouser ML, Cheng TD, Tinker LF, Shikany JM, Snetselaar L, et al. The interaction between dietary fiber and fat and risk of colorectal cancer in the women’s health initiative. Nutrients. 2016;8(12)

    Google Scholar 

  10. Smits SA, Leach J, Sonnenburg ED, Gonzalez CG, Lichtman JS, Reid G, et al. Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania. Science (New York, NY). 2017;357(6353):802–6.

    Article  CAS  Google Scholar 

  11. Mirmiran P, Bahadoran Z, Khalili Moghadam S, Zadeh Vakili A, Azizi F. A prospective study of different types of dietary fiber and risk of cardiovascular disease: Tehran Lipid and Glucose Study. Nutrients. 2016;8(11)

    Google Scholar 

  12. Kranz S, Dodd KW, Juan WY, Johnson LK, Jahns L. Whole grains contribute only a small proportion of dietary fiber to the U.S. diet. Nutrients. 2017;9(2)

    Google Scholar 

  13. Cozma-Petrut A, Loghin F, Miere D, Dumitrascu DL. Diet in irritable bowel syndrome: what to recommend, not what to forbid to patients! World J Gastroenterol. 2017;23(21):3771–83.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ho KS, Tan CY, Mohd Daud MA, Seow-Choen F. Stopping or reducing dietary fiber intake reduces constipation and its associated symptoms. World J Gastroenterol. 2012;18(33):4593–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Niwattisaiwong S, Burman KD, Li-Ng M. Iodine deficiency: clinical implications. Cleve Clin J Med. 2017;84(3):236–44.

    Article  PubMed  Google Scholar 

  16. Prete A, Paragliola RM, Corsello SM. Iodine supplementation: usage “with a grain of salt”. Int J Endocrinol. 2015;2015:312305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Luo Y, Kawashima A, Ishido Y, Yoshihara A, Oda K, Hiroi N, et al. Iodine excess as an environmental risk factor for autoimmune thyroid disease. Int J Mol Sci. 2014;15(7):12895–912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Institute of Medicine (US) Panel on Micronutrients. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Washington, DC: National Academy Press; 2001.

    Google Scholar 

  19. Hosur MB, Puranik RS, Vanaki S, Puranik SR. Study of thyroid hormones free triiodothyronine (FT3), free thyroxine (FT4) and thyroid stimulating hormone (TSH) in subjects with dental fluorosis. Eur J Dent. 2012;6(2):184–90.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Butt CM, Stapleton HM. Inhibition of thyroid hormone sulfotransferase activity by brominated flame retardants and halogenated phenolics. Chem Res Toxicol. 2013;26(11):1692–702.

    Article  CAS  PubMed  Google Scholar 

  21. Kennedy DO. B vitamins and the brain: mechanisms, dose and efficacy--a review. Nutrients. 2016;8(2):68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. National Institutes of Health OoDS. Thiamin Fact Sheet for Health Professionals [cited 2017 9/22/2017]. Available from: https://ods.nih.gov/factsheets/Thiamin-HealthProfessional.

  23. National Institutes of Health OoDS. Riboflavin fact sheet for health professionals: National Institutes of Health; 2018 [cited 2017 9/22/2017]. Available from: https://ods.nih.gov/factsheets/Riboflavin-HealthProessional.

  24. Boehnke C, Reuter U, Flach U, Schuh-Hofer S, Einhaupl KM, Arnold G. High-dose riboflavin treatment is efficacious in migraine prophylaxis: an open study in a tertiary care centre. Eur J Neurol. 2004;11(7):475–7.

    Article  CAS  PubMed  Google Scholar 

  25. Lab C. Recommended daily intakes and upper limits for nutrients [cited 2017 9/22/2017]. Available from: https://www.consumerlab.com/RDAs.

  26. Clements RS Jr, Darnell B. Myo-inositol content of common foods: development of a high-myo-inositol diet. Am J Clin Nutr. 1980;33(9):1954–67.

    Article  CAS  PubMed  Google Scholar 

  27. Lord RB, Biotin JA. Laboratory evaluations for integrative and functional medicine. 2nd ed. Duluth: Metametrix Institute; 2008. p. 39.

    Google Scholar 

  28. McCully KS. Homocysteine and the pathogenesis of atherosclerosis. Expert Rev Clin Pharmacol. 2015;2(Mar 8):211–9.

    Article  CAS  Google Scholar 

  29. Bailey LB, Stover PJ, McNulty H, Fenech MF, Gregory JF 3rd, Mills JL, et al. Biomarkers of nutrition for development-folate review. J Nutr. 2015;145(7):1636S–80S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. National Institutes of Health OoDS. Niacin Fact Sheet for Health Professionals. 2019.

    Google Scholar 

  31. Woolf K, Hahn NL, Christensen MM, Carlson-Phillips A, Hansen CM. Nutrition assessment of B-vitamins in highly active and sedentary women. Nutrients. 2017;9(4):329.

    Article  PubMed Central  Google Scholar 

  32. Ueland PM, Ulvik A, Rios-Avila L, Midttun Ø, Gregory JF. Direct and functional biomarkers of vitamin B6 status. Annu Rev Nutr. 2015;35:33–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hannibal L, Lysne V, Bjørke-Monsen A-L, Behringer S, Grünert SC, Spiekerkoetter U, et al. Biomarkers and algorithms for the diagnosis of Vitamin B12 deficiency. Front Mol Biosci. 2016;3:27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Majumdar R, Yori A, Rush PW, Raymond K, Gavrilov D, Tortorelli S, et al. Allelic spectrum of formiminotransferase-cyclodeaminase gene variants in individuals with formiminoglutamic aciduria. Mol Genet Genomic Med. 2017;5(6):795–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fratoni V, Brandi ML. B vitamins, homocysteine and bone health. Nutrients. 2015;7(4):2176–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Costantini A, Pala MI. Thiamine and Hashimoto’s thyroiditis: a report of three cases. J Altern Complementary Med. 2014;20(3):208–11.

    Article  Google Scholar 

  37. Sachdeva A, Chandra M, Choudhary M, Dayal P, Anand KS. Alcohol-related dementia and neurocognitive impairment: a review study. Int J High Risk Behav Addict. 2016;5(3):e27976.

    Article  PubMed  PubMed Central  Google Scholar 

  38. McAuley E, McNulty H, Hughes C, Strain JJ, Ward M. Riboflavin status, MTHFR genotype and blood pressure: current evidence and implications for personalised nutrition. Proc Nutr Soc. 2016;75(3):405–14.

    Article  CAS  PubMed  Google Scholar 

  39. Leahy L. Vitamin B supplementation: what’s the right choice for your patients? J Psychosoc Nurs Ment Health Serv. 2017;55(7):7–11.

    Article  PubMed  Google Scholar 

  40. Mozos I, Stoian D, Luca CT. Crosstalk between vitamins A, B12, D, K, C, and E status and arterial stiffness. Dis Markers. 2017;2017:8784971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Theuwissen E, Smit E, Vermeer C. The role of vitamin K in soft-tissue calcification. Adv Nutr. 2012;3(2):166–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fusaro M, Noale M, Viola V, Galli F, Tripepi G, Vajente N, et al. Vitamin K, vertebral fractures, vascular calcifications, and mortality: Vitamin K Italian (VIKI) dialysis study. J Bone Miner Res. 2012;27(11):2271–8.

    Article  CAS  PubMed  Google Scholar 

  43. Joo NS, Yang SW, Song BC, Yeum KJ. Vitamin A intake, serum vitamin D and bone mineral density: analysis of the Korea National Health and nutrition examination survey (KNHANES, 2008-2011). Nutrients. 2015;7(3):1716–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Meganathan P, Fu JY. Biological properties of tocotrienols: evidence in human studies. Int J Mol Sci. 2016;17(11)

    Google Scholar 

  45. Selvaraju TR, Khaza’ai H, Vidyadaran S, Abd Mutalib MS, Vasudevan R. The neuroprotective effects of tocotrienol rich fraction and alpha tocopherol against glutamate injury in astrocytes. Bosn J Basic Med Sci. 2014;14(4):195–204.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Tankeu AT, Ndip Agbor V, Noubiap JJ. Calcium supplementation and cardiovascular risk: a rising concern. J Clin Hypertens (Greenwich). 2017;19:640.

    Article  CAS  Google Scholar 

  47. Di Stefano M, Mengoli C, Bergonzi M, Corazza GR. Bone mass and mineral metabolism alterations in adult celiac disease: pathophysiology and clinical approach. Nutrients. 2013;5(11):4786–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Selby PL, Davies M, Adams JE, Mawer EB. Bone loss in celiac disease is related to secondary hyperparathyroidism. J Bone Miner Res. 1999;14(4):652–7.

    Article  CAS  PubMed  Google Scholar 

  49. Mirza F, Canalis E. Management of endocrine disease: secondary osteoporosis: pathophysiology and management. Eur J Endocrinol. 2015;173(3):R131–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sahmoun AE, Singh BB. Does a higher ratio of serum calcium to magnesium increase the risk for postmenopausal breast cancer? Med Hypotheses. 2010;75(3):315–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hruby A, O’Donnell CJ, Jacques PF, Meigs JB, Hoffmann U, McKeown NM. Magnesium intake is inversely associated with coronary artery calcification: the Framingham Heart Study. JACC Cardiovasc Imaging. 2014;7(1):59–69.

    Article  PubMed  Google Scholar 

  52. Huang JH, Tsai LC, Chang YC, Cheng FC. High or low calcium intake increases cardiovascular disease risks in older patients with type 2 diabetes. Cardiovasc Diabetol. 2014;13:120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Park J, Kwock CK, Yang YJ. The effect of the sodium to potassium ratio on hypertension prevalence: a propensity score matching approach. Nutrients. 2016;8(8)

    Google Scholar 

  54. Cai X, Li X, Fan W, Yu W, Wang S, Li Z, et al. Potassium and obesity/metabolic syndrome: a systematic review and meta-analysis of the epidemiological evidence. Nutrients. 2016;8(4):183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kieneker LM, Gansevoort RT, de Boer RA, Brouwers FP, Feskens EJ, Geleijnse JM, et al. Urinary potassium excretion and risk of cardiovascular events. Am J Clin Nutr. 2016;103(5):1204–12.

    Article  CAS  PubMed  Google Scholar 

  56. Jenkins DJ, Jones PJ, Frohlich J, Lamarche B, Ireland C, Nishi SK, et al. The effect of a dietary portfolio compared to a DASH-type diet on blood pressure. Nutr Metab Cardiovasc Dis. 2015;25(12):1132–9.

    Article  CAS  PubMed  Google Scholar 

  57. Plum LM, Rink L, Haase H. The essential toxin: impact of zinc on human health. Int J Environ Res Public Health. 2010;7(4):1342–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rowin J, Lewis SL. Copper deficiency myeloneuropathy and pancytopenia secondary to overuse of zinc supplementation. J Neurol Neurosurg Psychiatry. 2005;76(5):750–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lord RB, Bralley JA. Laboratory evaluations for integrative and functional medicine. Duluth: Metametrix Institute; 2008. p. 94–101.

    Google Scholar 

  60. Sloan J, Feyssa E. Copper. Medscape. Feb. 16th 2017. Retrieved from: https://emedicine.medscape.com/article/2087780-overview.

  61. Gilroy RK. Wilson disease workup: Medscape; 2016 [updated October 18, 2016; cited 2017 September 9, 2017]. Available from: https://emedicine.medscape.com/article/183456-workup.

  62. Ray CS, Singh B, Jena I, Behera S, Ray S. Low alkaline phosphatase (ALP) in adult population an indicator of zinc (Zn) and magnesium (mg) deficiency. Curr Res Nutr Food Sci. 2017;5(3):347–52.

    Article  Google Scholar 

  63. Kogan S, Sood A, Granick M. Zinc and wound healing. Wounds. 2017;29(4):102–6.

    PubMed  Google Scholar 

  64. Bjorklund G. The role of zinc and copper in autism spectrum disorders. Acta Neurobiol Exp. 2013;73(2):225–36.

    Google Scholar 

  65. Malavolta M, Piacenza F, Basso A, Giacconi R, Costarelli L, Mocchegiani E. Serum copper to zinc ratio: relationship with aging and health status. Mech Ageing Dev. 2015;151:93–100.

    Article  CAS  PubMed  Google Scholar 

  66. Collins JF, Klevay LM. Copper. Adv Nutr. 2011;2(6):520–2.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Moss HE. Bariatric surgery and the neuro-ophthalmologist. J Neuro Ophthalmol. 2016;36(1):78–84.

    Article  Google Scholar 

  68. Gaier ED, Kleppinger A, Ralle M, Mains RE, Kenny AM, Eipper BA. High serum Cu and Cu/Zn ratios correlate with impairments in bone density, physical performance and overall health in a population of elderly men with frailty characteristics. Exp Gerontol. 2012;47(7):491–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Harvey L, Ashton K, Hooper L, Casgrain A, Fairweather-Tait S. Methods of assessment of copper status in humans: a systematic review. Am J Clin Nutr. 2009;89:2009S–20024S.

    Article  CAS  PubMed  Google Scholar 

  70. Goodman VL, Brewer GJ, Merajver SD. Copper deficiency as an anti-cancer strategy. Endocr Relat Cancer. 2004;11(2):255–63.

    Article  CAS  PubMed  Google Scholar 

  71. Lee R, Neiman D. Nutritional assessment. 6th ed. New York: McGraw-Hill; 2013.

    Google Scholar 

  72. Bui VQ, Marcinkevage J, Ramakrishnan U, Flores-Ayala RC, Ramirez-Zea M, Villalpando S, et al. Associations among dietary zinc intakes and biomarkers of zinc status before and after a zinc supplementation program in Guatemalan schoolchildren. Food Nutr Bull. 2013;34(2):143–50.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Diez M, Cerdan F, Arroyo M, Balibrea L. Use of the copper/zinc ratio in the diagnosis of lung cancer. Cancer. 1989;63(4):726–30.

    Article  CAS  PubMed  Google Scholar 

  74. Simopoulos AP. An increase in the Omega-6/Omega-3 fatty acid ratio increases the risk for obesity. Nutrients. 2016;8(3):128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Carney RM, Steinmeyer BC, Freedland KE, Rubin EH, Rich MW, Harris WS. Baseline blood levels of omega-3 and depression remission: a secondary analysis of data from a placebo-controlled trial of omega-3 supplements. J Clin Psychiatry. 2016;77(2):e138–43.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Cahyaningrum F, Permadhi I, Ansari MR, Prafiantini E, Rachman PH, Agustina R. Dietary optimisation with omega-3 and omega-6 fatty acids for 12-23-month-old overweight and obese children in urban Jakarta. Asia Pac J Clin Nutr. 2016;25(Suppl 1):S62–s74.

    PubMed  Google Scholar 

  77. Hadley KB, Ryan AS, Forsyth S, Gautier S, Salem N Jr. The essentiality of arachidonic acid in infant development. Nutrients. 2016;8(4):216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Das UN. n-3 fatty acids, gamma-linolenic acid, and antioxidants in sepsis. Crit Care. 2013;17(2):312.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Sergeant S, Rahbar E, Chilton FH. Gamma-linolenic acid, Dihommo-gamma linolenic, eicosanoids and inflammatory processes. Eur J Pharmacol. 2016;785:77–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ricciotti E, FitzGerald GA. Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol. 2011;31(5):986–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lord RB, Bralley JA. Fatty acids. In: Institute M, editor. Laboratory evaluations for integrative and functional medicine. 2nd ed. Duluth: Metametrix Institute; 2008. p. 269–317.

    Google Scholar 

  82. Xu Y, Qian SY. Anti-cancer activities of omega-6 polyunsaturated fatty acids. Biom J. 2014;37(3):112–9.

    Google Scholar 

  83. Bassaganya-Riera J, Hontecillas R. Dietary conjugated linoleic acid and n-3 polyunsaturated fatty acids in inflammatory bowel disease. Curr Opin Clin Nutr Metab Care. 2010;13(5):569–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kullenberg D, Taylor LA, Schneider M, Massing U. Health effects of dietary phospholipids. Lipids Health Dis. 2012;11:3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Vinolo MA, Rodrigues HG, Nachbar RT, Curi R. Regulation of inflammation by short chain fatty acids. Nutrients. 2011;3(10):858–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rahat-Rozenbloom S, Fernandes J, Gloor GB, Wolever TM. Evidence for greater production of colonic short-chain fatty acids in overweight than lean humans. Int J Obes. 2014;38(12):1525–31.

    Article  CAS  Google Scholar 

  87. Zhang M, Zhou Q, Dorfman RG, Huang X, Fan T, Zhang H, et al. Butyrate inhibits interleukin-17 and generates Tregs to ameliorate colorectal colitis in rats. BMC Gastroenterol. 2016;16(1):84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wade AT, Davis CR, Dyer KA, Hodgson JM, Woodman RJ, Keage HA, et al. A mediterranean diet to improve cardiovascular and cognitive health: protocol for a randomised controlled intervention study. Nutrients. 2017;9(2)

    Google Scholar 

  89. Dussaillant C, Echeverria G, Urquiaga I, Velasco N, Rigotti A. Current evidence on health benefits of the mediterranean diet. Revista medica de Chile. 2016;144(8):1044–52.

    PubMed  Google Scholar 

  90. Boison D. New insights into the mechanisms of the ketogenic diet. Curr Opin Neurol. 2017;30(2):187–92.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Longo VD, Panda S. Fasting, circadian rhythms, and time-restricted feeding in healthy lifespan. Cell Metab. 2016;23(6):1048–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret Gasta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gasta, M. (2020). The Nutrition Assessment of Metabolic and Nutritional Balance. In: Noland, D., Drisko, J., Wagner, L. (eds) Integrative and Functional Medical Nutrition Therapy. Humana, Cham. https://doi.org/10.1007/978-3-030-30730-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30730-1_8

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-30729-5

  • Online ISBN: 978-3-030-30730-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics