Skip to main content
  • 2716 Accesses

Abstract

Integrative and functional medical nutrition therapy (IFMNT) is defined by in-depth assessment of a patient’s nutritional status followed by the implementation of a personalized therapeutic diet using food and targeted supplementation. There are several foundational diets that IFMNT practitioners employ. This chapter summarizes the overarching history and principles of therapeutic diets and reviews diets commonly used by IFMNT practitioners: elimination diets, low-histamine diet, low-carbohydrate high-fat (ketogenic) diet, and intermittent fasting. This is not meant to be an all-inclusive review of diets because practitioners should personalize the implementation of any dietary intervention he or she uses with a patient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boyce B. CMS final rule on therapeutic diet orders means new opportunities for RDNs. J Acad Nutr Diet. 2014;114(9):1326–8.

    Article  PubMed  Google Scholar 

  2. Weber Wea. Ayurveda: In Depth: National Center for Complementary and Integrative Health; 2015 [Available from: https://nccih.nih.gov/health/ayurveda/introduction.htm.

  3. Burke Aea. Traditional Chinese Medicine: In Depth: National Center for Complementary and Integrative Health; 2013 [updated October 2013. Available from: https://nccih.nih.gov/health/whatiscam/chinesemed.htm.

  4. Gray A. Nutritional recommendations for individuals with diabetes. Endotext [Internet]: MDText. com, Inc.; 2015.

    Google Scholar 

  5. Satija A, Hu FB. Plant-based diets and cardiovascular health. Trends Cardiovasc Med. 2018;28(7):437–41.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kakodkar S, Mutlu EA. Diet as a therapeutic option for adult inflammatory bowel disease. Gastroenterol Clin N Am. 2017;46(4):745–67.

    Article  Google Scholar 

  7. Gianfranceschi P, Fasani G, Speciani AF. Rheumatoid arthritis and the drop in tolerance to foods: elimination diets and the reestablishment of tolerance by low-dose diluted food. Ann N Y Acad Sci. 1996;778:379–81.

    Article  CAS  PubMed  Google Scholar 

  8. Cohen SA, Gold BD, Oliva S, Lewis J, Stallworth A, Koch B, et al. Clinical and mucosal improvement with specific carbohydrate diet in pediatric Crohn disease. J Pediatr Gastroenterol Nutr. 2014;59(4):516–21.

    Article  CAS  PubMed  Google Scholar 

  9. Uhde M, Ajamian M, Caio G, De Giorgio R, Indart A, Green PH, et al. Intestinal cell damage and systemic immune activation in individuals reporting sensitivity to wheat in the absence of coeliac disease. Gut. 2016;65(12):1930–7.

    Article  CAS  PubMed  Google Scholar 

  10. Fasano A, Sapone A, Zevallos V, Schuppan D. Nonceliac gluten sensitivity. Gastroenterology. 2015;148(6):1195–204.

    Article  CAS  PubMed  Google Scholar 

  11. Chen JW, Kao JY. Eosinophilic esophagitis: update on management and controversies. BMJ (Clinical research ed). 2017;359:j4482.

    Article  Google Scholar 

  12. Cianferoni A, Shuker M, Brown-Whitehorn T, Hunter H, Venter C, Spergel JM. Food avoidance strategies in eosinophilic oesophagitis. Clin Exp Allergy. 2019;49(3):269–84.

    Article  PubMed  Google Scholar 

  13. Gomez Torrijos E, Gonzalez-Mendiola R, Alvarado M, Avila R, Prieto-Garcia A, Valbuena T, et al. Eosinophilic esophagitis: review and update. Front Med. 2018;5:247.

    Article  Google Scholar 

  14. Kinoshita Y, Oouchi S, Fujisawa T. Eosinophilic gastrointestinal diseases - pathogenesis, diagnosis, and treatment. Allergol Int. 2019;68(4):420–9.

    Article  PubMed  Google Scholar 

  15. Kliewer KL, Cassin AM, Venter C. Dietary therapy for eosinophilic esophagitis: elimination and reintroduction. Clin Rev Allergy Immunol. 2018;55(1):70–87.

    Article  CAS  PubMed  Google Scholar 

  16. Munoz-Persy M, Lucendo AJ. Treatment of eosinophilic esophagitis in the pediatric patient: an evidence-based approach. Eur J Pediatr. 2018;177(5):649–63.

    Article  CAS  PubMed  Google Scholar 

  17. Nhu QM, Aceves SS. Medical and dietary management of eosinophilic esophagitis. Ann Allergy Asthma Immunol. 2018;121(2):156–61.

    Article  CAS  PubMed  Google Scholar 

  18. Nhu QM, Moawad FJ. New developments in the diagnosis and treatment of eosinophilic esophagitis. Curr Treat Options Gastroenterol. 2019;17(1):48–62.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Patel RV, Hirano I. New developments in the diagnosis, therapy, and monitoring of eosinophilic esophagitis. Curr Treat Options Gastroenterol. 2018;16(1):15–26.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pesek RD, Gupta SK. Emerging drugs for eosinophilic esophagitis. Expert Opin Emerg Drugs. 2018;23(2):173–83.

    Article  CAS  PubMed  Google Scholar 

  21. Wilson JM, McGowan EC. Diagnosis and management of eosinophilic esophagitis. Immunol Allergy Clin N Am. 2018;38(1):125–39.

    Article  Google Scholar 

  22. Akhondi H. Diagnostic approaches and treatment of eosinophilic esophagitis. A review article. Ann Med Surg. 2017;20:69–73.

    Article  Google Scholar 

  23. Cotton CC, Eluri S, Wolf WA, Dellon ES. Six-food elimination diet and topical steroids are effective for eosinophilic esophagitis: a meta-regression. Dig Dis Sci. 2017;62(9):2408–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. de Bortoli N, Penagini R, Savarino E, Marchi S. Eosinophilic esophagitis: update in diagnosis and management. Position paper by the Italian Society of Gastroenterology and Gastrointestinal Endoscopy (SIGE). Dig Liver Dis. 2017;49(3):254–60.

    Article  PubMed  Google Scholar 

  25. Hommeida S, Alsawas M, Murad MH, Katzka DA, Grothe RM, Absah I. The association between celiac disease and eosinophilic esophagitis: Mayo experience and meta-analysis of the literature. J Pediatr Gastroenterol Nutr. 2017;65(1):58–63.

    Article  PubMed  Google Scholar 

  26. McGowan EC, Platts-Mills TA. Eosinophilic esophagitis from an allergy perspective: how to optimally pursue allergy testing & dietary modification in the adult population. Curr Gastroenterol Rep. 2016;18(11):58.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Molina-Infante J, Gonzalez-Cordero PL, Arias A, Lucendo AJ. Update on dietary therapy for eosinophilic esophagitis in children and adults. Expert Rev Gastroenterol Hepatol. 2017;11(2):115–23.

    Article  CAS  PubMed  Google Scholar 

  28. Newberry C, Lynch K. Can we use diet to effectively treat esophageal disease? A review of the current literature. Curr Gastroenterol Rep. 2017;19(8):38.

    Article  PubMed  Google Scholar 

  29. Philpott H, Dellon ES. The role of maintenance therapy in eosinophilic esophagitis: who, why, and how? J Gastroenterol. 2018;53(2):165–71.

    Article  PubMed  Google Scholar 

  30. Philpott H, Kweh B, Thien F. Eosinophilic esophagitis: current understanding and evolving concepts. Asia Pac Allergy. 2017;7(1):3–9.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sun MF, Gu WZ, Peng KR, Liu MN, Shu XL, Jiang LQ, et al. Eosinophilic esophagitis in children: analysis of 22 cases. Zhonghua Er Ke Za Zhi. 2017;55(7):499–503.

    CAS  PubMed  Google Scholar 

  32. Braly K, Williamson N, Shaffer ML, Lee D, Wahbeh G, Klein J, et al. Nutritional adequacy of the specific carbohydrate diet in pediatric inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2017;65(5):533–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gunasekeera V, Mendall MA, Chan D, Kumar D. Treatment of Crohn’s disease with an IgG4-guided exclusion diet: a randomized controlled trial. Dig Dis Sci. 2016;61(4):1148–57.

    Article  CAS  PubMed  Google Scholar 

  34. Jian L, Anqi H, Gang L, Litian W, Yanyan X, Mengdi W, et al. Food exclusion based on IgG antibodies alleviates symptoms in ulcerative colitis: a prospective study. Inflamm Bowel Dis. 2018;24:1918.

    Article  PubMed  Google Scholar 

  35. Limketkai BN, Iheozor-Ejiofor Z, Gjuladin-Hellon T, Parian A, Matarese LE, Bracewell K, et al. Dietary interventions for induction and maintenance of remission in inflammatory bowel disease. Cochrane Database Syst Rev. 2019;2:Cd012839.

    Google Scholar 

  36. Penagini F, Dilillo D, Borsani B, Cococcioni L, Galli E, Bedogni G, et al. Nutrition in pediatric inflammatory bowel disease: from etiology to treatment. A systematic review. Nutrients. 2016;8(6):1–27.

    Google Scholar 

  37. Ruemmele FM. Role of diet in inflammatory bowel disease. Ann Nutr Metab. 2016;68(Suppl 1):33–41.

    Article  PubMed  Google Scholar 

  38. Wang G, Ren J, Li G, Hu Q, Gu G, Ren H, et al. The utility of food antigen test in the diagnosis of Crohn’s disease and remission maintenance after exclusive enteral nutrition. Clin Res Hepatol Gastroenterol. 2018;42(2):145–52.

    Article  PubMed  Google Scholar 

  39. Casellas F, Burgos R, Marcos A, Santos J, Ciriza-de-Los-Ríos C, Garcia-Manzanares A, et al. Consensus document on exclusion diets in irritable bowel syndrome (IBS). Nutr Hosp. 2018;35(6):1450–66.

    Article  PubMed  Google Scholar 

  40. Werlang ME, Palmer WC, Lacy BE. Irritable bowel syndrome and dietary interventions. Gastroenterol Hepatol. 2019;15(1):16–26.

    Google Scholar 

  41. Endreffy I, Bjorklund G, Dicso F, Urbina MA, Endreffy E. Acid glycosaminoglycan (aGAG) excretion is increased in children with autism spectrum disorder, and it can be controlled by diet. Metab Brain Dis. 2016;31(2):273–8.

    Article  CAS  PubMed  Google Scholar 

  42. Kawicka A, Regulska-Ilow B. How nutritional status, diet and dietary supplements can affect autism. A review. Roczniki Panstwowego Zakladu Higieny. 2013;64(1):1–12.

    CAS  PubMed  Google Scholar 

  43. Ly V, Bottelier M, Hoekstra PJ, Arias Vasquez A, Buitelaar JK, Rommelse NN. Elimination diets’ efficacy and mechanisms in attention deficit hyperactivity disorder and autism spectrum disorder. Eur Child Adolesc Psychiatry. 2017;26(9):1067–79.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mitchell N, Hewitt CE, Jayakody S, Islam M, Adamson J, Watt I, et al. Randomised controlled trial of food elimination diet based on IgG antibodies for the prevention of migraine like headaches. Nutr J. 2011;10:85.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Caminero A, Meisel M, Jabri B, Verdu EF. Mechanisms by which gut microorganisms influence food sensitivities. Nat Rev Gastroenterol Hepatol. 2019;16(1):7–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schnedl WJ, Lackner S, Enko D, Schenk M, Mangge H, Holasek SJ. Non-celiac gluten sensitivity: people without celiac disease avoiding gluten-is it due to histamine intolerance? Inflamm Res. 2018;67(4):279–84.

    Article  CAS  PubMed  Google Scholar 

  47. Sapone A, Lammers KM, Casolaro V, Cammarota M, Giuliano M, De Rosa M, et al. Divergence of gut permeability and mucosal immune gene expression in two gluten-associated conditions: celiac disease and gluten sensitivity. BMC Med. 2011;9(1):23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Carroccio A, Brusca I, Mansueto P, Soresi M, D’Alcamo A, Ambrosiano G, et al. Fecal assays detect hypersensitivity to cow’s milk protein and gluten in adults with irritable bowel syndrome. Clin Gastroenterol Hepatol. 2011;9(11):965–71.e3.

    Article  CAS  PubMed  Google Scholar 

  49. Manning LP, Biesiekierski JR. Use of dietary interventions for functional gastrointestinal disorders. Curr Opin Pharmacol. 2018;43:132–8.

    Article  CAS  PubMed  Google Scholar 

  50. Masharani U, Sherchan P, Schloetter M, Stratford S, Xiao A, Sebastian A, et al. Metabolic and physiologic effects from consuming a hunter-gatherer (Paleolithic)-type diet in type 2 diabetes. Eur J Clin Nutr. 2015;69(8):944–8.

    Article  CAS  PubMed  Google Scholar 

  51. Staudacher HM, Ralph FSE, Irving PM, Whelan K, Lomer MCE. Nutrient intake, diet quality, and diet diversity in irritable bowel syndrome and the impact of the low FODMAP Diet. J Acad Nutr Diet. 2019; https://doi.org/10.1016/j.jand.2019.01.017.

  52. Drisko J, Bischoff B, Hall M, McCallum R. Treating irritable bowel syndrome with a food elimination diet followed by food challenge and probiotics. J Am Coll Nutr. 2006;25(6):514–22.

    Article  PubMed  Google Scholar 

  53. Neuendorf R, Corn J, Hanes D, Bradley R. Impact of food immunoglobulin G-based elimination diet on subsequent food immunoglobulin G and quality of life in overweight/obese adults. J Altern Complement Med. 2019;25(2):241–8.

    Article  PubMed  Google Scholar 

  54. El Khoury D, Balfour-Ducharme S, Joye IJ. A review on the gluten-free diet: technological and nutritional challenges. Nutrients. 2018;10(10):1–25.

    Google Scholar 

  55. Rizzo G, Baroni L. Soy, soy foods and their role in vegetarian diets. Nutrients. 2018;10(1):1–51.

    Google Scholar 

  56. Rehault-Godbert S, Guyot N, Nys Y. The Golden egg: nutritional value, bioactivities, and emerging benefits for human health. Nutrients. 2019;11(3):1–26.

    Google Scholar 

  57. de Souza RGM, Schincaglia RM, Pimentel GD, Mota JF. Nuts and human health outcomes: a systematic review. Nutrients. 2017;9(12):1–23.

    Google Scholar 

  58. Papanikolaou Y, Fulgoni VL. Grain foods are contributors of nutrient density for American adults and help close nutrient recommendation gaps: data from the National Health and Nutrition Examination Survey, 2009-2012. Nutrients. 2017;9(8):1–14.

    Google Scholar 

  59. Purves D, Williams SM. Neuroscience. 2nd ed. Biogenic Amines Chapter: Sinauer Associates; 2001.

    Google Scholar 

  60. HDC gene - Genetics Home Reference [Internet]. U.S. National Library of Medicine. National Institutes of Health; [cited 2018May11]. Available from: https://ghr.nlm.nih.gov/gene/HDC.

  61. Kanki M, Yoda T, Tsukamoto T, Baba E. Histidine decarboxylases and their role in accumulation of histamine in tuna and dried saury. Appl Environ Microbiol. 2007;73(5):1467–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Urb M, Sheppard DC. The role of mast cells in the defense against pathogens. PLoS Pathog. 2012;8(4):e1002619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Krishnan K. How the microbiome shapes the systemic immune system in health and disease. Lecture presented at: Premier On-line Training with Susan Allen-Evenson and Kiran Krishnan; 2017.

    Google Scholar 

  64. Joneja JMV. Dealing with food allergies in babies and children. Boulder: Bull Pub. Co.; 2007.

    Google Scholar 

  65. Smolinska S, Jutel M, Crameri R, O’Mahony L. Histamine and gut mucosal immune regulation. Allergy. 2013;69(3):273–81.

    Article  CAS  PubMed  Google Scholar 

  66. Bonds RS, Midoro-Horiuti T. Estrogen effects in allergy and asthma. Curr Opin Allergy Clin Immunol. 2013;13(1):92–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gogos J. COMT (catechol-O-methyltransferase). Wiley Encyclopedia of Molecular Medicine; 2002.

    Google Scholar 

  68. Jarisch R. Histamine intolerance histamine and seasickness. Berlin: Springer Berlin; 2014.

    Google Scholar 

  69. Lynch B. Dirty genes: a breakthrough program to treat the root cause of illness and optimize your health: HarperCollins Publishers; 2018.

    Google Scholar 

  70. Swink TD, Vining EP, Freeman JM. The ketogenic diet: 1997. Advances in Pediatrics. 1997;40:297–329.

    Google Scholar 

  71. Freeman JM, Kossoff EH, Hartman AL. The ketogenic diet: one decade later. Pediatrics. 2007;119(3):535–43.

    Article  PubMed  Google Scholar 

  72. Volek JS, Phinney SD, Kossoff E, Eberstein J, Moore J. The art and science of low carbohydrate living an expert guide to making the life-saving benefits of carbohydrate restriction sustainable and enjoyable. Lexington: Beyond obesity; 2011.

    Google Scholar 

  73. Bredesen DE. The end of Alzheimer’s: the first program to prevent and reverse the cognitive decline of dementia. London: Vermilion; 2017.

    Google Scholar 

  74. Lemanne D. Carbohydrate restriction in cancer therapy. Lecture presented at: Low Carb Breck 2017; Colorado; 2017.

    Google Scholar 

  75. Meyerhardt JA, Sato K, Niedzwiecki D, Ye C, Saltz LB, Mayer RJ, et al. Dietary glycemic load and cancer recurrence and survival in patients with stage III colon cancer: findings from CALGB 89803. JNCI. 2012;104(22):1702–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Epstein T, Gatenby RA, Brown JS. The Warburg effect as an adaptation of cancer cells to rapid fluctuations in energy demand. PLoS One. 2017;12(9):e0185085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Seyfried TN, Sanderson TM, El-Abbadi MM, Mcgowan R, Mukherjee P. Role of glucose and ketone bodies in the metabolic control of experimental brain cancer. Br J Cancer. 2003;89:1375–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Abdelwahab MG, Fenton KE, Preul MC, Rho JM, Lynch A, Stafford P, Scheck AC. The ketogenic diet is an effective adjuvant to radiation therapy for the treatment of malignant glioma. PLoS One. 2012;7:e36197.

    Article  PubMed  PubMed Central  Google Scholar 

  79. What You Should Know About Diabetic Ketoacidosis [Internet]. WebMD. WebMD; [cited 2018May8]. Available from: https://www.webmd.com/diabetes/ketoacidosis.

  80. Kitabchi AE, Fisher JN. Hyperglycemic crises: diabetic ketoacidosis (DKA) and hyperglycemic hyperosmolar state (HHS). Acute Endocrinol. 2008:119–47.

    Google Scholar 

  81. Vanitallie TB, Nufert TH. Ketones: metabolisms ugly duckling. Nutr Rev. 2003;61(10):327–41.

    Article  PubMed  Google Scholar 

  82. Appendix 7. Nutritional Goals for Age-Sex Groups Based on Dietary Reference Intakes and Dietary Guidelines Recommendations [Internet]. Chapter 4 - 2008 Physical activity guidelines. [cited 2018May9]. Available from: https://health.gov/dietaryguidelines/2015/guidelines/appendix-7/.

  83. Cordain L. The Paleo Diet. Place of publication not identified: John Wiley & Sons Ltd; 2010.

    Google Scholar 

  84. Farooki A, Schneider SH. Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin: response to Bowker et al. Diabetes Care. 2006;29(8):1989–90.

    Article  PubMed  Google Scholar 

  85. Zendehdel K. Cancer incidence in patients with type 1 diabetes mellitus: a population-based cohort study in Sweden. Cancer Spectrum Knowledge Environment. 2003;95(23):1797–800.

    Google Scholar 

  86. Renehan AG, Zwahlen M, Minder C, O’Dwyer ST, Shalet SM, Egger M. Insulin-like growth factor (IGF)-I, IGF binding protein-3, and cancer risk: systematic review and meta-regression analysis. Lancet. 2004;363(9418):1346–53.

    Article  CAS  PubMed  Google Scholar 

  87. Influence of a diet very high in vegetables, fruit, and fiber and low in fat on prognosis following treatment for breast cancer: the Women’s healthy eating and living (WHEL) randomized trial. Breast diseases: a year book quarterly 2008;19(1):35–36.

    Google Scholar 

  88. Blackburn GL, Wang KA. Dietary fat reduction and breast cancer outcome: results from the Women’s intervention nutrition study (WINS). Am J Clin Nutr. 2007;86(3):878S.

    Article  CAS  Google Scholar 

  89. Jeong S-M, Choi S, Kim K, Kim S-M, Lee G, Son JS, et al. Association of change in total cholesterol level with mortality: a population-based study. PLoS One. 2018;13(4):e0196030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ketogenesis Drives BRAF-MEK1 Signaling in BRAFV600E-Positive Cancers. Cancer Discovery. 2015;5(9).

    Google Scholar 

  91. Lyssiotis C, Cantley L. Acetate fuels the cancer engine. Cell. 2015;160(3):567. https://doi.org/10.1016/j.cell.2015.01.021.

    Article  CAS  Google Scholar 

  92. Cao MD, Lamichhane S, Lundgren S, Bofin A, Fjøsne H, GiskeødegĂ¥rd GF, Bathen TF. Metabolic characterization of triple negative breast cancer. BMC Cancer. 2014;14(1) https://doi.org/10.1186/1471-2407-14-941.

  93. Wise DR, Thompson CB. Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci. 2010;35(8):427–33. https://doi.org/10.1016/j.tibs.2010.05.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Fung J. Diabetes code prevent and reverse type 2 diabetes naturally. Carlton: Scribe Publications; 2018.

    Google Scholar 

  95. Volek JS, Phinney SD. The art and science of low carbohydrate performance. Beyond Obesity LLC: BerlĂ­n; 2012.

    Google Scholar 

  96. Harvey CJ, Schofield GM, Williden M, Mcquillan JA. The effect of medium chain triglycerides on time to nutritional ketosis and symptoms of keto-induction in healthy adults: a randomised controlled clinical trial. J Nutr Metab. 2018;2018:1–9. https://doi.org/10.1155/2018/2630565.

    Article  CAS  Google Scholar 

  97. Patterson RE, Sears DD. Metabolic effects of intermittent fasting. Annu Rev Nutr. 2017;37(1):371–93.

    Article  CAS  PubMed  Google Scholar 

  98. Santos HO, Macedo RC. Impact of intermittent fasting on the lipid profile: assessment associated with diet and weight loss. Clin Nutr ESPEN. 2018;24:14.

    Article  PubMed  Google Scholar 

  99. Golbidi S, Daiber A, Korac B, Li H, Essop MF, Laher I. Health benefits of fasting and caloric restriction. Curr Diab Rep. 2017;17(12):123.

    Article  CAS  PubMed  Google Scholar 

  100. Kim K-H, Kim YH, Son JE, Lee JH, Kim S, Choe MS, et al. Intermittent fasting promotes adipose thermogenesis and metabolic homeostasis via VEGF-mediated alternative activation of macrophage. Cell Res. 2017;27(11):1309–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Haas JT, Staels B. Fasting the microbiota to improve metabolism? Cell Metab. 2017;26(4):584–5.

    Article  CAS  PubMed  Google Scholar 

  102. Stockman M, Thomas D, Burke J, Apovian CM. (2018). Intermittent fasting: is the wait worth the weight? Retrieved from https://rd.springer.com/article/10.1007/s13679-018-0308-9.

  103. Pimentel M. A new IBS solution: bacteria, the missing link in treating irritable bowel syndrome. Sherman Oaks: Health Point Press; 2011.

    Google Scholar 

  104. Doig CM. Controlled trial of bowel rest and nutritional support in the management of Crohn’s disease. J Pediatr Surg. 1989;24(9):945.

    Article  Google Scholar 

  105. Mcintyre PB, Powell-Tuck J, Wood SR, Lennard-Jones JE, Lerebours E, Hecketsweiler P, et al. Controlled trial of bowel rest in the treatment of severe acute colitis. Gut. 1986;27(5):481–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Fung J, Moore J. The complete guide to fasting: heal your body through intermittent, alternate-day, and extended fasting. Las Vegas: Victory Belt Publishing; 2016.

    Google Scholar 

  107. Longo VD, Mattson MP. Fasting: molecular mechanisms and clinical applications. Cell Metab. 2014;19(2):181–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Mendelsohn AR, Larrick JW. Prolonged fasting/refeeding promotes hematopoietic stem cell regeneration and rejuvenation. Rejuvenation Res. 2014;17(4):385–9.

    Article  CAS  PubMed  Google Scholar 

  109. Lee C, Raffaghello L, Brandhorst S, Safdie FM, Bianchi G, Martin-Montalvo A, et al. Fasting cycles retard growth of tumors and sensitize a range of cancer cell types to chemotherapy. Sci Transl Med. 2012;4(124):124ra27.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Safdie FM, Dorff T, Quinn D, Fontana L, Wei M, Lee C, et al. Fasting and cancer treatment in humans: a case series report. Aging. 2009;1(12):988–1007.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Mehanna HM, Moledina J, Travis J. Refeeding syndrome: what it is, and how to prevent and treat it. BMJ. 2008;336(7659):1495–8.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Lemmane D. Carbohydrate restriction in cancer therapy. Lecture presented at: Low Carb Breck 2017; Colorado; 2017.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leigh Wagner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Long, T., Wagner, L. (2020). Therapeutic Diets. In: Noland, D., Drisko, J., Wagner, L. (eds) Integrative and Functional Medical Nutrition Therapy. Humana, Cham. https://doi.org/10.1007/978-3-030-30730-1_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30730-1_42

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-30729-5

  • Online ISBN: 978-3-030-30730-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics