Skip to main content

Influences of the Nutrition Transition on Chronic Disease

  • Chapter
  • First Online:
Integrative and Functional Medical Nutrition Therapy

Abstract

The term nutrition transition coined in the early 1990s by Barry Popkin describes global alterations in diet structure, body composition, and physical activity patterns, with a special emphasis on emerging economies undergoing rapid demographic, socioeconomic, and acculturative changes. The health-related outcomes of these shifts in the form of non-communicable chronic degenerative diseases (NCDs) have been well described in the industrialized world over the past four decades. There is growing evidence that these changes are extending to the developing world, specifically the low- and middle-income countries (LMICs) depending on the degree of socio-economic development achieved. Large segments of the global population are consequently affected. Furthermore, these changes in emerging economies are occurring at a rapid pace, younger age, and in an environment where infectious and nutrition-related deficiency diseases continue to persist. Consequently, these economies face a double burden of disease wherein the struggles of undernutrition coexist with the maladies of overnutrition within the same individual, family, or community. This paradox poses important challenges in mitigating the unhealthy aspects of nutrition transition from a public health perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Omran AR. The epidemiological transition: a theory of the epidemiology of population change. Milbank Q. 1971;49:509–38.

    Article  CAS  Google Scholar 

  2. Popkin BM. An overview on the nutrition transition and its health implications: the Bellagio meeting. Public Health Nutr. 2002;5(1A):93–103.

    Article  PubMed  Google Scholar 

  3. Popkin BM. The nutrition transition in low income countries: an emerging crisis. Nutr Rev. 1994;52(9):285–98.

    Article  CAS  PubMed  Google Scholar 

  4. Popkin BM. Global changes in diet and activity patterns as drivers of the nutrition transition. Nestle Nutr Workshop Ser Pediatr Program. 2009;63:1–10;discussion 10–4, 259–68. https://doi.org/10.1159/000209967.

  5. Popkin BM, Adair LS, Ng SW. Global nutrition transition and the pandemic of obesity in developing countries. Nutr Rev. 2012;70(1):3–21. https://doi.org/10.1111/j.1753-4887.2011.00456.x.

    Article  PubMed  Google Scholar 

  6. Popkin BM. Global dynamics: the world is shifting rapidly toward a diet linked with non-communicable diseases. Am J Clin Nutr. 2006;84(2):289–98.

    Article  CAS  PubMed  Google Scholar 

  7. Kennedy G, Nantel G, Shetty P. Globalization of food systems in developing countries: a synthesis of case studies. FAO Food Nutr Pap. 2004;83:1–24.

    PubMed  Google Scholar 

  8. Bender RL, Dufour DL. Nutrition transitions: a view from anthropology. In: Dufour DL, Goodman AH, Pelto GH, editors. Nutritional anthropology biocultural perspectives on food and nutrition. 2nd ed. New York: Oxford University Press; 2012. p. 372–82.

    Google Scholar 

  9. Russel LB. Chronic health effects of dispossession and dietary change: lessons from North American hunter-gatherers. Med Anthropol. 1999;18(2):135–61.

    Article  Google Scholar 

  10. Lansing S. Priests and programmers: technologies of power in the Engineered Landscape in Bali. Princeton: Princeton University Press; 1991. p. 183.

    Google Scholar 

  11. Netting RM, Stone MP, Stone GD. Kofyar cash cropping: choice and change in indigenous agricultural development. In: Bates DG, Lees SH, editors. Case studies in human ecology. New York: Plenum Press; 1996. p. 327–48.

    Chapter  Google Scholar 

  12. Rappaport RA. Pigs for the ancestors: ritual in the ecology of a new Guinea people. 2nd ed. New Haven: Yale University Press; 1968. p. 501.

    Google Scholar 

  13. Hayden B. Were luxury foods the first domesticates? Ethnoarchaeological perspectives from Southeast Asia. World Archaeol. 2003;34:458–69.

    Article  Google Scholar 

  14. Cox GW. The ecology of famine: an overview. Ecol Food Nutr. 1978;6(4):207–20.

    Article  Google Scholar 

  15. Dietler M. Feasts and commensal politics in the political economy: food, power and status in pre-historic Europe. In: Weissner P, Schieffenhovel W, editors. Food and the status quest: an interdisciplinary perspective. Providence: Berghahn Books; 1996. p. 87–125.

    Google Scholar 

  16. Larsen CS. Biological changes in human populations with agriculture. Ann Rev Anthropol. 1995;24:185–213.

    Article  Google Scholar 

  17. Gurven M, Kaplan H. Longevity among hunter-gatherers: a cross-cultural examination. Popul Dev Rev. 2007;33(2):321–65.

    Article  Google Scholar 

  18. Sebby K. The green revolution of the 1960’s and its impact on small farmers in India [undergraduate thesis]. Lincoln: University of Nebraska; 2010. p. 1–25.

    Google Scholar 

  19. Vimarlund V, Le Rouge C. Barriers and opportunities to the widespread adoption of telemedicine: a bi-country evaluation. Stud Health Technol Inform. 2013;192:933.

    PubMed  Google Scholar 

  20. Centers for Disease Control and Prevention. Ten great public health achievements- United States- 2001-2010. MMWR. 2011;60(19):619–623.

    Google Scholar 

  21. Hawkes C. Uneven dietary development: linking the policies and processes of globalization with the nutrition transition, obesity and diet related chronic diseases. Global Health. 2006;2:4. https://doi.org/10.1186/1744-8603-2-4.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hawkes C. The role of foreign direct investment in the nutrition transition. Public Health Nutr. 2005;8(4):357–65.

    Article  PubMed  Google Scholar 

  23. Mody A. Is FDI integrating the world economy? World Econ. 2004;27(8):1195–222.

    Article  Google Scholar 

  24. Dube L, Pingali P, Webb P. Paths of convergence for agriculture, health and wealth. Proc Natl Acad Sci U S A. 2012;109(31):12294–301. https://doi.org/10.1073/pnas.0912951109.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hamid El Bilali Allahyari MS. Transition towards sustainability in agriculture and food systems: role of information and communication technologies. Inf Process Agric. 2018; https://doi.org/10.1016/j.inpa.2018.06.006.

  26. GPS.gov: Agricultural applications. http://www.gps.gov/applications/agriculture. Last accessed 21 Apr 2017.

  27. Hammonds T. Use of GIS in Agriculture April 3, 2017. https://smallfarms.cornell.edu/2017/04/use-of-gis/.

  28. Hawkes C. Marketing activities of global soft drink and fast food companies in emerging markets: a review. In: Globalization, diets and non-communicable diseases. Geneva: World Health Organization; 2002.

    Google Scholar 

  29. Monteiro CA, Cannon G. The impact of transnational “big food” companies on the south: a view from Brazil. PLoS Med. 2012;9(7):e1001252. https://doi.org/10.1371/journal.pmed.1001252.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hawkes C, Chopra M, Friel S. Globalization, trade and the nutrition transition. In: Labonté R, Schrecker T, Packer C, Runnels V, editors. Globalization and health: pathways, evidence and policy. New York: Routledge; 2009. p. 235–62.

    Google Scholar 

  31. Popkin BM, Adair LS, Ng SW. Now and then: the global nutrition transition: the pandemic of obesity in developing countries. Nutr Rev. 2012;70(1):3–21. https://doi.org/10.1111/j.1753-4887.2011.00456x.

    Article  PubMed  Google Scholar 

  32. Popkin BM, Gordon-Larsen P. The nutrition transition: worldwide obesity dynamics and their determinants. Int J of Obes Relat Metab Disord. 2004;28:S2–9.

    Article  Google Scholar 

  33. Drewnowski A, Popkin BM. The nutrition transition: new trends in the global diet. Nutr Rev. 1997;55(2):31–43.

    Article  CAS  PubMed  Google Scholar 

  34. Baker P, Friel S. Food systems transformations, ultra-processed food markets and the nutrition transition in Asia. Glob Health. 2016;12(1):80. https://doi.org/10.1186/s12992-016-0223-3.

    Article  Google Scholar 

  35. Gersh BJ, Sliwa K, Mayosi BM, Yusuf S. Novel therapeutic concepts: the epidemic of cardiovascular disease in the developing world: global implications. Eur Heart J. 2010;31(6):642–8. https://doi.org/10.1093/eurheartj/ehq030.

    Article  PubMed  Google Scholar 

  36. Cordain L, Eaton SB, Sebastian A, Mann N, Lindeberg S, Watkins BA, et al. Origins and evolution of the Western diet: health implications for the 21st century. Am J Clin Nutr. 2005;81(2):341–54.

    Article  CAS  PubMed  Google Scholar 

  37. Popkin BM. The nutrition transition: an overview of world patterns of change. Nutr Rev. 2004;62(7 Pt 2):S140–3. https://doi.org/10.1301/nr.2004.jul.S140–S143.

    Article  PubMed  Google Scholar 

  38. Popkin BM, Doak CM. The obesity epidemic is a worldwide phenomenon. Nutr Rev. 1998;56:106–14.

    Article  CAS  PubMed  Google Scholar 

  39. Nielsen SJ, Popkin BM. Changes in beverage intake between 1977 and 2001. Am J Prev Med. 2004;27(3):205–10.

    Article  PubMed  Google Scholar 

  40. Duffey KJ, Popkin BM. Shifts in patterns and consumption of beverages between 1965 and 2002. Obesity (Silver Spring). 2007;15(11):2739–47.

    Article  Google Scholar 

  41. Hafekost K, Mitrou F, Lawrence D, Zubrick SR. Sugar sweetened beverage consumption by Australian children: implications for public health strategy. BMC Public Health. 2011;11:950. https://doi.org/10.1186/1471-2458-11-950.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Colchero MA, Popkin BM, Rivera JA, Ng SW. Beverage purchases from stores in Mexico under the excise tax on sugar sweetened beverages: observational study. BMJ. 2016;352:h 6704. https://doi.org/10.1136/bmj.h6704.

    Article  Google Scholar 

  43. Hawkes C. The influence of trade liberalization and global dietary change: the case of vegetable oils, meat and highly processed foods. In: Hawkes C, Blouin C, Henson S, Drager N, Dubé L, editors. Trade, food, diet and health: perspectives and policy options. Chichester: Wiley; 2010. p. 35–59.

    Google Scholar 

  44. Gayathri R, Ruchi V, Mohan V. Impact of nutrition transition and resulting morbidities on economic and human development. Curr Diabetes Rev. 2017;13(6) https://doi.org/10.2174/1573399812666160901095534.

  45. Min Y, Jiang LX, Yan LF, Wang LH, Basu S, Wu YF, et al. Tackling China’s noncommunicable diseases: shared origins, costly consequences and the need for action. Chin Med J. 2015;128(6):839–43. https://doi.org/10.4103/0366-6999.152690.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Beckman C. Vegetable oils: competition in a global market. Bi-weekly Bulletin: Agri Agri-Food Canada. 2005;18(11):1–6.

    Google Scholar 

  47. Sassi F. How U.S. obesity compares with other countries [Internet]. PBS Newshour. 2013; [cited 21 April 2017]. Available from: http://www.pbs.org/newshour/rundown/how-us-obesity-compares-with-other-countries/.

  48. Oggioni C, Lara J, Wells JC, Soroka K, Siervo M. Shifts in population dietary patterns and physical inactivity as determinants of global trends in the prevalence of diabetes: an ecological analysis. Nutr Metab Cardiovasc Dis. 2014;24(10):1105–11. https://doi.org/10.1016/j.numecd.2014.05.005.

    Article  CAS  PubMed  Google Scholar 

  49. Popkin BM. The shift in stages of the nutrition transition in the developing world differs from past experiences. Part II. What is unique about the experience in lower- and middle income less-industrialized countries compared with the very-high income industrialized countries? Public Health Nutr. 2002;5(1A):205–14.

    Article  PubMed  Google Scholar 

  50. Popkin BM. Synthesis and implications: China’s nutrition transition in the context of changes across other low- and middle-income countries. Obes Rev. 2014;15:60–7. https://doi.org/10.1111/obr.12120.

    Article  PubMed  Google Scholar 

  51. Bankman J. India and the Hidden Consequences of Nutrition Transition [Internet]. Civil Eats. 2013. [cited 17 April 2017]. Available from: http://civileats.com/2013/08/27/india-and-the-hidden-consequences-of-nutrition-transition/.

  52. Bishwajit G. Nutrition transition in South Asia: the emergence of non-communicable chronic diseases. F1000Res. 2015;4:8. https://doi.org/10.12688/11000research.5732.2.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ramachandran A, Mary S, Yamuna A, Murugesan N, Snehalatha C. High prevalence of diabetes and cardiovascular risk factors associated with urbanization in India. Diabetes Care. 2008;31(5):893–8.

    Article  PubMed  Google Scholar 

  54. Saquib N, Saquib J, Ahmed T, Khanam MA, Cullen MR. Cardiovascular diseases and type 2 diabetes in Bangladesh: a systematic review and meta-analysis of studies between 1995 and 2010. BMC Public Health. 2012;12:434.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ford ND, Patel SA, Narayan KM. Obesity in low- and middle-income countries: burden, drivers, and emerging challenges. Annu Rev Public Health. 2017;38:145–64. https://doi.org/10.1146/annurev-publhealth-031816-044604.

    Article  PubMed  Google Scholar 

  56. Levels and trends in child malnutrition: Key findings of the 2015 edition. http://www.who.int/nutgrowthdb/jme_brochure2015.pdf?ua=1. Last accessed 21 Apr 2017.

  57. Levels and trends in child malnutrition: Key findings of the 2016 edition. http://www.who.int/nutgrowthdb/jme_brochure2016.pdf?ua=1. Last accessed 21 Apr 2017.

  58. Swinburn BA, Sacks G, Hall KD, McPherson K, Finegood DT, Moodie ML, et al. The global obesity pandemic: shaped by global drivers and local environments. Lancet. 2011;378(9793):804–14. https://doi.org/10.1016/S0140-6736(11)60813-1.

    Article  PubMed  Google Scholar 

  59. Kim J. Are genes destiny? Exploring the role of intrauterine environment in moderating genetic influences on body mass. Am J Hum Biol. 2019;8:e23354. https://doi.org/10.1002/ajhb.23354. [Epub ahead of print].

    Article  Google Scholar 

  60. Fall CH. Fetal programming and the risk of noncommunicable disease. Indian J Pediatr. 2013;80(1):S13–20. https://doi.org/10.1007/s12098-012-0834-5.

    Article  PubMed  Google Scholar 

  61. Zeba AN, Delisle HF, Renier G, Savadogo B, Baya B. The double burden of malnutrition and cardiometabolic risk widens the gender and socio-economic health gap: a study among adults in Burkina Faso (West Africa). Public Health Nutr. 2012;15(12):2210–9. https://doi.org/10.1017/S1368980012000729. Epub 2012 Mar 30.

    Article  PubMed  Google Scholar 

  62. Abegunde DO, Mathers CD, Adam T, Ortegon M, Strong K. The burden and costs of chronic diseases in low-income and middle-income countries. Lancet. 2007;370(9603):1929–38.

    Article  PubMed  Google Scholar 

  63. Miranda JJ, Kinra S, Casa JP, Davey Smith G, Ebrahim S. Non-communicable diseases in low and middle income countries: context, determinants and health policy. Tropical Med Int Health. 2008;13(10):1225–34. https://doi.org/10.1111/j.1365-3156.2008.02116.x.

    Article  CAS  Google Scholar 

  64. Noncommunicable diseases. http://www.who.int/mediacentre/factsheets/fs355/en/. Last accessed 21 Apr 2017.

  65. Nishida K, Otsu K. Inflammation and metabolic cardiomyopathy. Cardiovasc Res. 2017;113(4):389–98. https://doi.org/10.1093/cvr/cvx012.

    Article  CAS  PubMed  Google Scholar 

  66. NCD Risk Factor Collaboration (NCD-RisC). Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet. 2016;387(10026):1377–96.

    Article  Google Scholar 

  67. Kankeu HT, Saksena P, Xu K, Evans DB. The financial burden from non-communicable diseases in low- and middle-income countries: a literature review. Health Res Policy Syst. 2013;11:31. https://doi.org/10.1186/1478-4505-11-31.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Lomazzi M, Borisch B, Laaser U. The millennium development goals: experiences, achievements and what’s next. Global Health Action. 2014;7:23695. https://doi.org/10.3402/gha.v7.23695.

    Article  PubMed  Google Scholar 

  69. Haddad L, Cameron L, Barnett I. The double burden of malnutrition in SE Asia and the Pacific: priorities, policies and politics. Health Policy Plan. 2015;30(9):1193–206. https://doi.org/10.1093/heapol/czu110.

    Article  PubMed  Google Scholar 

  70. Shrimpton R, Rokx C. The double burden of malnutrition: a review of global evidence. In: Health, Nutrition and Population (HNP) discussion paper. Washington, DC: World Bank; 2012. p. 1–59. Available from: http://documents.worldbank.org/curated/en/905651468339879888/The-double-burden-of-malnutrition-a-review-of-global-evidence.

    Google Scholar 

  71. Black RE, Victora CG, Walker SP, Bhutta ZA, Christian P, de Onis M, et al. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet. 2013;382(9890):427–51. https://doi.org/10.1016/S0140-6736(13)60937-X. Epub 2013 Jun 6.

    Article  PubMed  Google Scholar 

  72. The double burden of malnutrition. Case studies from six developing countries. FAO Food Nutr Pap. 2006;84:1–334.

    Google Scholar 

  73. Abubakari AR, Lauder W, Agyemang C, Jones M, Kirk A, Bhopal RS. Prevalence and time trends in obesity among adult West African populations: a meta-analysis. Obes Rev. 2008;9(4):297–311.

    Article  CAS  PubMed  Google Scholar 

  74. Eckhardt CL, Torheim LE, Monterrubio E, Barquera S, Ruel MT. The overlap of overweight and anaemia among women in three countries undergoing the nutrition transition. Eur J Clin Nutr. 2008;62(2):238–46.

    Article  CAS  PubMed  Google Scholar 

  75. Black RE, Allen LH, Bhutta ZA, Caulfield LE, de Onis M, Ezzati M, et al. Maternal and child undernutrition: global and regional exposures and health consequences. Lancet. 2008;371(9608):243–60. https://doi.org/10.1016/S0140-6736(07)61690-0.

    Article  PubMed  Google Scholar 

  76. West KP Jr. Extent of vitamin A deficiency among preschool children and women of reproductive age. J Nutr. 2002;132(9 Suppl):857S–2866S.

    Google Scholar 

  77. Barquera S, Peterson KE, Must A, Rogers BL, Flores M, Houser R. Coexistence of maternal central adiposity and child stunting in Mexico. Int J Obes. 2007;31(4):601–7.

    Article  CAS  Google Scholar 

  78. Uauy R, Kain J, Corvalan C. How can the Developmental Origins of Health and Disease (DOHaD) hypothesis contribute to improving health in developing countries? Am J Clin Nutr. 2011;94(6 Suppl):1759s–64S. https://doi.org/10.3945/ajcn.110.000562.

    Article  CAS  PubMed  Google Scholar 

  79. Elshenawy S, Simmons R. Maternal obesity and prenatal programming. Mol Cell Endocrinol. 2016;435:2–6.

    Article  CAS  PubMed  Google Scholar 

  80. Zambrano E, Ibáñez C, Martinez-Samayoa PM, Lomas-Soria C, Durand-Carbajal M, Rodríquez-González GL. Maternal obesity: lifelong metabolic outcomes for offspring from poor developmental trajectories during the perinatal period. Arch Med Res. 2016;47(1):1–12. https://doi.org/10.1016/j.arcmed.2016.01.004.

    Article  PubMed  Google Scholar 

  81. Segovia SA, Vickers MH, Gray C, Reynolds CM. Maternal obesity, inflammation, and developmental programming. Biomed Res Int. 2014;2014:418975. https://doi.org/10.1155/2014/418975.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Nathanielsz PW, Ford SP, Long NM, Vega CC, Reyes-Castro LA, Zambrano E. Interventions designed to prevent adverse programming outcomes resulting from exposure to maternal obesity during development. Nutr Rev. 2013;71(01):S78–87. https://doi.org/10.1111/nure.12062.

    Article  PubMed  Google Scholar 

  83. Kapil U, Sachdev HP. Urgent need to orient public health response to rapid nutrition transition. Indian J Community Med. 2012;37(4):207–10. https://doi.org/10.4103/0970-0218.103465.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Bates I, Boyd A, Aslanyan G, Cole DC. Tackling the tensions in evaluating capacity strengthening for health research in low- and middle-income countries. Health Policy Plan. 2015;30(3):334–44. https://doi.org/10.1093/heapol/czu016.

    Article  PubMed  Google Scholar 

  85. De Boo HA, Harding JE. The developmental origins of adult disease (Barker) hypothesis. Aust N Z J Obstet Gynaecol. 2006;46(1):4–14.

    Article  PubMed  Google Scholar 

  86. Barker DJ. The origins of the developmental origins theory. J Intern Med. 2007;261(5):412–7.

    Article  CAS  PubMed  Google Scholar 

  87. Padmanabhan V, Cardoso RC, Puttabyatappa M. Developmental programming a pathway to disease. Endocrinology. 2016;157(4):1328–40. https://doi.org/10.1210/en.2016-1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bruce KD, Hanson MA. The developmental origins, mechanisms, and implications of metabolic syndrome. J Nutr. 2010;140(3):648–52. https://doi.org/10.3945/jn.109.111179.

    Article  CAS  PubMed  Google Scholar 

  89. Befroy DE, Petersen KF, Dufour S, Mason GF, de Graaf RA, Rothman DL. Impaired mitochondrial substrate oxidation in muscle of insulin-resistant offspring of type 2 diabetic patients. Diabetes. 2007;56(5):1376–81. https://doi.org/10.2337/db06-0783.

    Article  CAS  PubMed  Google Scholar 

  90. Chmurzynska A. Fetal programming: link between early nutrition, DNA methylation and complex diseases. Nutr Rev. 2010;68(2):87–98. https://doi.org/10.1111/j.1753-4887.2009.00265.x.

    Article  PubMed  Google Scholar 

  91. Tutino GE, Tam WH, Yang X, Chan JC, Lao TT, Ma RC. Diabetes and pregnancy: perspectives from Asia. Diabet Med. 2014;31(3):302–18. https://doi.org/10.1111/dme.12396.

    Article  CAS  PubMed  Google Scholar 

  92. Egger G. In search of a germ theory equivalent for chronic disease. Prev Chronic Dis. 2012;9(11):1–7.

    Google Scholar 

  93. Egger G, Dixon J. Beyond obesity and lifestyle: a review of 21st century chronic disease determinants. Biomed Res Int. 2014;2014:731685. https://doi.org/10.1155/2014/731685.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444(7121):860–7.

    Article  CAS  PubMed  Google Scholar 

  95. Bosma-den Boer MM, van Wetten ML, Pruimboom L. Chronic inflammatory diseases are stimulated by current lifestyle: how diet, stress levels and medication prevent our body from recovering. Nutr Metab (Lond). 2012;9(1):32. https://doi.org/10.1186/1743-7075-9-32.

    Article  Google Scholar 

  96. Barbaresko J, Koch M, Schulze MB, Nothlings U. Dietary pattern analysis and biomarkers of low grade inflammation: a systematic literature review. Nutr Rev. 2013;71(8):511–27. https://doi.org/10.1111/nure.12035.

    Article  PubMed  Google Scholar 

  97. Gregor MF, Hotamisligil GS. Inflammatory mechanisms in obesity. Annu Rev Immunol. 2011;29:415–45.

    Article  CAS  PubMed  Google Scholar 

  98. Laumbach RJ, Kipen HM. Acute effects of motor vehicle traffic-related air pollution exposures on measures of oxidative stress in human airways. Ann N Y Acad Sci. 2010;1203:107–12. https://doi.org/10.1111/j.1749-6632.2010.05604.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kelley AS, Banker M, Goodrich JM, Dolinoy DC, Burant C, Domino SE, Padmanabhan V. Early pregnancy exposure to endocrine disrupting chemical mixtures are associated with inflammatory changes in maternal and neonatal circulation. Sci Rep. 2019;9(1):5422. https://doi.org/10.1038/s41598-019-41134-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hyman MA. Functional diagnostics: redefining disease. Altern Ther Health Med. 2008;14(4):10–4.

    PubMed  Google Scholar 

  101. Sebert S, Sharkey D, Budge H, Symonds ME. The early programming of metabolic health: is epigenetic setting the missing link? Am J Clin Nutr. 2011;94(6 Suppl):1953S–8S. https://doi.org/10.3945/ajcn.110.001040.

    Article  CAS  PubMed  Google Scholar 

  102. Cohen S, Janicki-Deverts D, Doyle WJ, Miller GE, Frank E, Rabin BS, et al. Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk. Proc Natl Acad Sci U S A. 2012;109(16):5995–9. https://doi.org/10.1073/pnas.1118355109.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Fredman G, Spite M. Specialized pro-resolving mediators in cardiovascular diseases. Mol Aspects Med. 2017. pii:S0098–2997(17)30017–1. https://doi.org/10.1016/j.mam.2017.02.003.

  104. Serhan CN, Chiang N, Dalli J, Levy BD. Lipid mediators in the resolution of inflammation. Cold Spring Harb Perspect Biol. 2014;7(2):a016311. https://doi.org/10.1101/cshperspect.a016311.

    Article  CAS  PubMed  Google Scholar 

  105. Kuda O. Bioactive metabolites of docosahexaenoic acid. Biochimie. 2017;136:12–20. https://doi.org/10.1016/j.biochi.2017.01.002.

    Article  CAS  PubMed  Google Scholar 

  106. Sansbury BE, Spite M. Resolution of acute inflammation and the role of resolvins in immunity, thrombosis, and vascular biology. Circ Res. 2016;119(1):113–30. https://doi.org/10.1161/CIRCRESAHA.116.307308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Bannenberg GL. Therapeutic applicability of anti-inflammatory and proresolving polyunsaturated fatty acid derived lipid mediators. Sci World J. 2010;10:676–712. https://doi.org/10.1100/tsw.2010.57.

    Article  CAS  Google Scholar 

  108. Franco OH, Karnik K, Osborne G, Ordovas JM, Catt M, van der Ouderaa F. Changing course in ageing research: the healthy ageing phenotype. Maturitas. 2009;63(1):13–9. https://doi.org/10.1016/j.maturitas.2009.02.006.

    Article  PubMed  Google Scholar 

  109. Kiefete-de Jong JC, Mathers JC, Franco OH. Nutrition and healthy ageing: the key ingredients. Proc Nutr Soc. 2014;73(2):249–59. https://doi.org/10.1017/S0029665113003881.

    Article  Google Scholar 

  110. Mozaffarian D. Dietary and policy priorities for cardiovascular disease, diabetes, and obesity – a comprehensive review. Circulation. 2016;133(2):187–225. https://doi.org/10.1161/CIRCULATIONAHA.115.018585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Minich DM, Bland JS. Personalized lifestyle medicine: relevance for nutrition and lifestyle recommendations. ScientificWorldJournal. 2013;2013:129841. https://doi.org/10.1155/2013/129841.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Jones DS, Quinn S. AAPI’s nutrition guide to optimal health: using principles of functional medicine and nutritional genomics [Internet]. 2012. Chapter 1, Functional medicine; [cited 21 April 2017]; p. 6–12. Available from www.aapiusa.org.

  113. Baker SM. The metaphor of an oceanic disease. Integr Med. 2008;7(1):40–5.

    Google Scholar 

  114. Shah T, Zabaneh D, Gaunt T, Swerdlow DI, Shah S, Talmud PJ, et al. Gene-centric analysis identifies variants associated with interleukin-6 levels and shared pathways with other inflammation markers. Circ Cardiovasc Genet. 2013;6(2):163–70. https://doi.org/10.1161/CIRCGENETICS.112.96425.

    Article  CAS  PubMed  Google Scholar 

  115. Rana S, Kumar S, Rathore N, Padwad Y, Bhushana S. Nutrigenomics and its impact on life style associated metabolic diseases. Curr Genomics. 2016;17(3):261–78. https://doi.org/10.2174/1389202917666160202220422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Leischow SJ, Best A, Trochim WM, Clark PI, Gallagher RS, Marcus SE, et al. Systems thinking to improve the public’s health. Am J Prev Med. 2008;35(20):S196–203. https://doi.org/10.1016/j.amepre.2008.05.014.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Bloch P, Toft U, Reinbach HC, Clausen LT, Mikkelsen BE, Poulsen K, et al. Revitalizing the setting approach – supersettings for sustainable impact in community health promotion. Int J Behav Nutr Phys Act. 2014;11:118. https://doi.org/10.1186/s12966-014-0118-8.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Fardet A, Rock E. Toward a new philosophy of preventive nutrition: from a reductionist to a holistic paradigm to improve nutritional recommendations. Adv Nutr. 2014;5(4):430–46. https://doi.org/10.3945/an114.006122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sunguya BF, Ong KI, Dhakal S, Mlunde LB, Shibanuma A, Yasuoka J, et al. Strong nutrition governance is a key to addressing nutrition transition in low and middle-income countries: review of countries’ nutrition policies. Nutr J. 2014;13:65. https://doi.org/10.1186/1475-2891-13-65.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Buckinx F. The public health challenge of ending malnutrition: the relevance of the World Health Organization’s. Asia Pac J Public Health. 2018;30(7):624–8. https://doi.org/10.1177/1010539518800341. Epub 2018 Sep 15.

    Article  Google Scholar 

  121. Hawkes C. Food policies for healthy populations and healthy economies. BMJ. 2012;344:e2801. https://doi.org/10.1136/bmj.e2801.

    Article  PubMed  Google Scholar 

  122. Sacks G, Swinburn B, Lawrence M. Obesity policy action framework and analysis grids for a comprehensive policy approach to reducing obesity. Obes Rev. 2009;10(1):76–86. https://doi.org/10.1111/j.1467-789X.2008.00524.x.

    Article  CAS  PubMed  Google Scholar 

  123. Capacci S, Mazzocchi M, Shankar B, Macias JB, Verbeke W, Pérez-Cueto FJ, et al. Policies to promote healthy eating in Europe: a structured review of policies and their effectiveness. Nutr Rev. 2012;70(3):188–200. https://doi.org/10.1111/j.1753-4887.2011.00442.x.

    Article  PubMed  Google Scholar 

  124. Gayathri R, Ruchi V, Mohan V. Impact of nutrition transition and resulting morbidities on economic and human development. Curr Diabetes Rev. 2017;13(6):00–0. https://doi.org/10.2174/1573399812666160901095534.

  125. Hawkes C, Jewell J, Allen K. A food policy package for healthy diets and the prevention of obesity and diet related non-communicable diseases: the NOURISHING framework. Obes Rev. 2013;14(2):159–68. https://doi.org/10.1111/obr.12098.

    Article  PubMed  Google Scholar 

  126. 2008–2013 Action Plan for the Global Strategy for the Prevention and Control of Noncommunicable Diseases. http://www.who.int/nmh/publications/ncd_action_plan_en.pdf. Last accessed 21 Apr 2017.

  127. Mattei J, Malik V, Wedick N, Hu FB, Spiegelman D, Willett WC, et al. Reducing the global burden of type 2 diabetes by improving the quality of staple foods: the global nutrition and epidemiologic transition initiative. Glob Health. 2015;11:23. https://doi.org/10.1186/s12992-015-0109-9.

    Article  Google Scholar 

  128. Doak C. Large scale interventions and programmes addressing nutrition related chronic diseases and obesity: examples from 14 countries. Public Health Nutr. 2002;5(1A):275–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudha Raj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raj, S. (2020). Influences of the Nutrition Transition on Chronic Disease. In: Noland, D., Drisko, J., Wagner, L. (eds) Integrative and Functional Medical Nutrition Therapy. Humana, Cham. https://doi.org/10.1007/978-3-030-30730-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30730-1_2

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-30729-5

  • Online ISBN: 978-3-030-30730-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics