Skip to main content

Part of the book series: IFMBE Proceedings ((IFMBE,volume 75))

Included in the following conference series:

Abstract

As a result of the increasing interest on genomic signal processing, there is the necessity of develop computational software that combines different tools for signal processing and automatic analysis. This paper presents a computational tool for mapping and clustering DNA sequences. Several DNA numerical representations, a feature extraction method, the K-means algorithm and different clustering evaluation metrics were implemented. This software allows to researchers to perform genomic signal analysis through a graphical user interface, without need programming skills. The tool is prepared to increase their capabilities by implementing different algorithms or modules. Also, a comparative analysis of eleven DNA numerical representation is presented. The results show that Electron-ion and Voss present the best performances when clustering genomic signals using K-means. The clusters quality was measure using the ARI metric.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chang, X., Escobar, F.A., Valderrama, C., Robert, V.: Exploring sequence alignment algorithms on FPGA-based heterogeneous architectures. In: IWBBIO, pp. 330–341 (2014)

    Google Scholar 

  2. Hou, W., Pan, Q., Peng, Q., He, M.: A new method to analyze protein sequence similarity using dynamic time warping. Genomics 109(2), 123–130 (2017)

    Article  Google Scholar 

  3. Mendizabal-Ruiz, G., Román-Godínez, I., Torres-Ramos, S., Salido-Ruiz, R.A., Vélez-Pérez, H., Morales, J.A.: Genomic signal processing for DNA sequence clustering. PeerJ 6, e4264 (2018)

    Article  Google Scholar 

  4. Mendizabal-Ruiz, G., Román-Godínez, I., Torres-Ramos, S., Salido-Ruiz, R.A., Morales, J.A.: On DNA numerical representations for genomic similarity computation. PLoS ONE 12(3), e0173288 (2017)

    Article  Google Scholar 

  5. Borrayo, E., Mendizabal-Ruiz, E.G., Vélez-Pérez, H., Romo-Vázquez, R., Mendizabal, A.P., Morales, J.A.: Genomic signal processing methods for computation of alignment-free distances from DNA sequences. PLoS ONE 9(11), e110954 (2014)

    Article  Google Scholar 

  6. Dougherty, E.R., Shmulevich, I., Chen, J., Wang, Z.J.: Genomic Signal Processing and Statistics, vol. 2. Hindawi Publishing Corporation, New York (2005)

    Book  Google Scholar 

  7. Liu, D.W., Jia, R.P., Wang, C.F., Arunkumar, N., Narasimhan, K., Udayakumar, M., Elamaran, V.: Automated detection of cancerous genomic sequences using genomic signal processing and machine learning. Future Gener. Comput. Syst. 98, 233–237 (2019)

    Article  Google Scholar 

  8. Shen, T., Nagai, Y., Udayakumar, M., Narasimhan, K., Shriram, R.K., Mohanraj, N., Elamaran, V.: Automated genomic signal processing for diseased gene identification. J. Med. Imaging Health Inform. 9(6), 1254–1261 (2019)

    Article  Google Scholar 

  9. Weighill, D., Macaya-Sanz, D., DiFazio, S.P., Joubert, W., Shah, M., Schmutz, J., Jacobson, D.: Wavelet-based genomic signal processing for centromere identification and hypothesis generation. Front. Genet. 10, 487 (2019)

    Article  Google Scholar 

  10. Mabrouk, M.S., Naeem, S.M., Eldosoky, M.A.: Different genomic signal processing methods for eukaryotic gene prediction: a systematic REVIEW. Biomed. Eng.: Appl. Basis Commun. 29(01), 1730001 (2017)

    Google Scholar 

  11. Anastassiou, D.: Genomic signal processing. IEEE Signal Process. Mag. 18(4), 8–20 (2001)

    Article  Google Scholar 

  12. Yu, N., Li, Z., Yu, Z.: Survey on encoding schemes for genomic data representation and feature learning—from signal processing to machine learning. Big Data Min. Analytics 1(3), 191–210 (2018)

    Article  MathSciNet  Google Scholar 

  13. NCBI. https://www.ncbi.nlm.nih.gov/. Accessed 14 May 2019

  14. BioPython. https://biopython.org/. Accessed 14 May 2019

  15. Kwan, H.K., Arniker, S.B.: Numerical representation of DNA sequences. In: IEEE International Conference on Electro/Information Technology EIT2009, pp. 307–310. IEEE (2009)

    Google Scholar 

  16. DSP Guide. http://www.dspguide.com/. Accessed 14 May 2019

  17. The Python Package Index (PyPI). https://pypi.org/. Accessed 14 May 2019

  18. NumPy Package. http://www.numpy.org/. Accessed 14 May 2019

  19. Scikit-learn. https://scikit-learn.org/stable/. Accessed 14 May 2019

  20. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

    Article  Google Scholar 

  21. Santos, J.M., Embrechts, M.: On the use of the adjusted rand index as a metric for evaluating supervised classification. In: International Conference on Artificial Neural Networks ICANN 2009, pp. 175–184. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  22. The wxPython. https://wxpython.org/. Accessed 14 May 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria Ramírez .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ramírez, V., Román-Godínez, I., Torres-Ramos, S. (2020). DNA-MC: Tool for Mapping and Clustering DNA Sequences. In: González Díaz, C., et al. VIII Latin American Conference on Biomedical Engineering and XLII National Conference on Biomedical Engineering. CLAIB 2019. IFMBE Proceedings, vol 75. Springer, Cham. https://doi.org/10.1007/978-3-030-30648-9_98

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30648-9_98

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30647-2

  • Online ISBN: 978-3-030-30648-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics