Skip to main content

Prediction of Breast Cancer Diagnosis by Blood Biomarkers Using Artificial Neural Networks

  • Conference paper
  • First Online:
VIII Latin American Conference on Biomedical Engineering and XLII National Conference on Biomedical Engineering (CLAIB 2019)

Part of the book series: IFMBE Proceedings ((IFMBE,volume 75))

Included in the following conference series:

  • 2001 Accesses

Abstract

The use of artificial neural networks (ANNs) has been very helpful in carrying out prediction, classification and data optimization tasks. In this work, ANNs were used to predict the diagnosis for breast cancer in a women population with overweight or obese and possible diabetes, coupled with a pre or postmenopausal stage and compared against other machine learning techniques reported in literature. The algorithms used to train the ANNs models were Scaled Conjugate Gradient, Resilient Backpropagation and Conjugate Gradient Backpropagation with Powell Beale Restarts. The algorithms results were compared with the original dataset creator’s work, as well as other authors using the same dataset for classification task, a better classification was accomplished using this work ANNs. With four predictors the next values were obtained, AUC = 0.96, sensitivity = 0.96, specificity = 0.96 and Youden index = 0.92. With nine predictors the next values were obtained, AUC = 0.96, sensitivity = 0.95, specificity = 0.97 and Youden index = 0.92. Different strategies are suggested to improve the results, exploring more hidden layers and a different validation method.

R. Castañeda—Independent researcher.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization: Diabetes (2018). https://www.who.int/es/news-room/fact-sheets/detail/diabetes

  2. World Health Organization: Obesity and overweight (2018). https://www.who.int/es/news-room/fact-sheets/detail/obesity-and-overweight

  3. World Health Organization: Cancer: Breast cancer (2019). https://www.who.int/cancer/prevention/diagnosis-screening/breast-cancer/en/

  4. International Agency for Research on Cancer: World cancer statistics (2019). http://gco.iarc.fr/today/data/factsheets/populations/900-world-fact-sheets.pdf

  5. Crisóstomo, J., Matafome, P., Santos-Silva, D., Gomes, A.L., Gomes, M., Patírcio, M., Letra, L., Sarmento-Ribeiro, A.B., Santos, L., Seiça, R.: Hyperresistinemia and metabolic dysregulation: a risky crosstalk in obese breast cancer. Endocrine 53(2), 433–442 (2016). https://doi.org/10.1007/s12020-016-0893-x

    Article  Google Scholar 

  6. Georgiou, G.P., Provatopoulou, X., Kalogera, E., Siasos, G., Menenakos, E., Zografos, G.C., Gounaris, A.: Serum resistin is inversely related to breast cancer risk in premenopausal women. The Breast, vol. 29, pp. 163–169. (2016). https://doi.org/10.1016/j.breast.2016.07.025

    Article  Google Scholar 

  7. Dalamaga, M.: Resistin as a biomarker linking obesity and inflammation to cancer: potential clinical perspectives. Biomarkers Med. 8, 107–118 (2014)

    Article  Google Scholar 

  8. Santillán-Benítez, J.G., Mendieta-Zerón, H., Gómez-Oliván, L.M., Torres-Juárez, J.J., González-Bañales, J.M., Hernández-Peña, L.V., Ordóñez-Quiroz, A.: The tetrad BMI, leptin, leptin/adiponectin (L/A) ratio and CA 15–3 are reliable biomarkers of breast cancer. J. Clin. Lab. Anal. 27(1), 12–20 (2013). https://doi.org/10.1002/jcla.21555

    Article  Google Scholar 

  9. Dalamaga, M., Sotiropoulos, G., Karmaniolas, K., Pelekanos, N., Papadavid, E., Lekka, A.: Serum resistin: a biomarker of breast cancer in postmenopausal women? association with clinicopathological characteristics, tumor markers, in flammatory and metabolic parameters. Clin. Biochem. 46(7–8), 584–590 (2013). https://doi.org/10.1016/j.clinbiochem.2013.01.001

    Article  Google Scholar 

  10. Henry, N.L., Hayes, D.F.: Cancer biomarkers. Mol. Oncol. 6(2), 140–146 (2012). https://doi.org/10.1016/j.molonc.2012.01.010

    Article  Google Scholar 

  11. Vaughan, L.: Biomarkers in acute medicine key points. Medicine 45(3), 150–156 (2016). https://doi.org/10.1016/j.mpmed.2016.12.005

    Article  Google Scholar 

  12. Loke, S.Y., Lee, A.S.G.: The future of blood-based biomarkers for the early detection of breast cancer (2018)

    Google Scholar 

  13. Duffy, M.J., McDermott, E.W., Crown, J.: Blood-based biomarkers in breast cancer: from proteins to circulating tumor cells to circulating tumor DNA. Tumor Biol. 40(5), 1–11 (2018). https://doi.org/10.1177/1010428318776169

    Article  Google Scholar 

  14. Uttley, L., Whiteman, B.L., Woods, H.B., Harnan, S., Philips, S.T., Cree, I.A.: Building the evidence base of blood-based biomarkers for early detection of cancer: a rapid systematic mapping review. EBioMedicine 10, 164–173 (2016). https://doi.org/10.1016/j.ebiom.2016.07.004

    Article  Google Scholar 

  15. Wang, H., Zheng, B., Yoon, S.W., Ko, H.S.: A support vector machine-based ensemble algorithm for breast cancer diagnosis. Eur. J. Oper. Res. 267(2), 687–699 (2018). https://doi.org/10.1016/j.ejor.2017.12.001

    Article  MathSciNet  MATH  Google Scholar 

  16. Tapak, L., Shirmohammadi-Khorram, N., Amini, P., Alafchi, B., Hamidi, O., Poorolajal, J.: Prediction of survival and metastasis in breast cancer patients using machine learning classifiers. Clin. Epidemiol. Glob. Health, 1–7 (2018). https://doi.org/10.1016/j.cegh.2018.10.003

    Article  Google Scholar 

  17. Guo, Y., Shang, X., Li, Z.: Identification of cancer subtypes by integrating multiple types of transcriptomics data with deep learning in breast cancer. Neurocomputing 324, 20–30 (2019). https://doi.org/10.1016/j.neucom.2018.03.072

    Article  Google Scholar 

  18. Xu, Y., Wang, Y., Yuan, J., Cheng, Q., Wang, X., Carson, P.L.: Medical breast ultrasound image segmentation by machine learning. Ultrasonics 91(July), 1–9 (2019). https://doi.org/10.1016/j.ultras.2018.07.006

    Article  Google Scholar 

  19. Kourou, K., Exarchos, T.P., Exarchos, K.P., Karamouzis, M.V., Fotiadis, D.I.: Machine learning applications in cancer prognosis and prediction. Comput. Struct. Biotech. J. 13, 8–17 (2015). https://doi.org/10.1016/j.csbj.2014.11.005

    Article  Google Scholar 

  20. Kalinli, A., Sarikoc, F., Akgun, H., Ozturk, F.: Performance comparison of machine learning methods for prognosis of hormone receptor status in breast cancer tissue samples. Comput. Methods Programs Biomed. 110(3), 298–307 (2013). https://doi.org/10.1016/j.cmpb.2012.12.005

    Article  Google Scholar 

  21. Núñez, C.: Clinica chimica acta blood-based protein biomarkers in breast cancer. Clin. Chim. Acta 490(December), 113–127 (2019). https://doi.org/10.1016/j.cca.2018.12.028

    Article  Google Scholar 

  22. Sumbal, S., Javed, A., Afroze, B., Zulfiqar, H.F., Javed, F., Noreen, S., Ijaz, B.: Circulating tumor DNA in blood: future genomic biomarkers for cancer detection. Exp. Hematol. 65, 17–28 (2018). https://doi.org/10.1016/j.exphem.2018.06.003

    Article  Google Scholar 

  23. Lourenco, A.P., Benson, K.L., Henderson, M.C., Silver, M., Letsios, E., Tran, Q., Gordon, K.J., Borman, S., Corn, C., Mulpuri, R., Smith, W., Alpers, J., Costantini, C., Rohatgi, N., Yang, R., Haythem, A., Biren, S., Morris, M., Kass, F., Reese, D.E.: A noninvasive blood-based combinatorial proteomic biomarker assay to detect breast cancer in women under the age of 50 years. Clin. Breast Cancer 17(7), 516–525 (2017). https://doi.org/10.1016/j.clbc.2017.05.004

    Article  Google Scholar 

  24. Levenson, V.V.: Biomarkers for early detection of breast cancer: what, when, and where? Biochim. Biophys. Acta 1770(6), 847–856 (2007). https://doi.org/10.1016/j.bbagen.2007.01.017

    Article  Google Scholar 

  25. Dua, D., Taniskidou, E.K.: UCI Machine Learning Repository (2017). http://archive.ics.uci.edu/ml

  26. Patrício, M., Pereira, J., Crisóstomo, J., Matafome, P., Gomes, M., Seiça, R., Caramelo, F.: Using Resistin, glucose, age and BMI to predict the presence of breast cancer. BMC Cancer 18(1), 1–8 (2018). https://doi.org/10.1186/s12885-017-3877-1

    Article  Google Scholar 

  27. Agatonovic-Kustrin, S., Beresford, R.: Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J. Pharm. Biomed. Anal. 22(5), 717–727 (2000). https://doi.org/10.1016/S0731-7085(99)00272-1

    Article  Google Scholar 

  28. Riesel, D.: Selecting an activation function (2007). https://doi.org/10.1016/S0140-6736(95)92880-4

    Article  Google Scholar 

  29. Duch, W., Jankowski, N.: Survey of neural transfer functions. Neural Comput. Surv. 2, 163–212 (1999). ftp://ftp.icsi.berkeley.edu/pub/ai/jagota/vol2_6.pdf

  30. Flores, D.L., Gómez, C., Cervantes, D., Abaroa, A., Castro, C., Castañeda-Martínez, R.A.: Predicting the physiological response of Tivela stultorum hearts with digoxin from cardiac parameters using artificial neural networks. BioSystems 151, 1–7 (2017). https://doi.org/10.1016/j.biosystems.2016.11.002

    Article  Google Scholar 

  31. Jiménez, F.M.: Redes neuronales y preprocesado de variables para modelos y sensores en bioingeniería. PhD thesis, Universidad Politécnica de Valencia (2012). https://riunet.upv.es/bitstream/handle/10251/16702/tesisUPV3874.pdf

  32. Hagan, M.T., Demuth, H.B., Beale, M.: Neural Network Design (2014)

    Google Scholar 

  33. Erb, R.J.: Introduction to backpropagation neural network computation. Pharm. Res. 10(2), 165–170 (1993)

    Article  Google Scholar 

  34. Chrislb. (https://commons.wikimedia.org/wiki/File:ArtificialNeuronModel.png), “ArtificialNeuronModel”. https://creativecommons.org/licenses/by-sa/3.0/legalcode

  35. Shanker, M., Hu, M.: Cutoff values for two-group classification using neural networks (1996). http://www.personal.kent.edu/~mshanker/personal/Zip_files/im-1996.PDF

  36. Turki, T., Wei, Z.: Boosting support vector machines for cancer discrimination tasks. Comput. Biol. Med. 101(July), 236–249 (2018). https://doi.org/10.1016/j.compbiomed.2018.08.006

    Article  Google Scholar 

  37. Xiao, Y., Wu, J., Lin, Z., Zhao, X.: A deep learning-based multi-model ensemble method for cancer prediction. Comput. Methods Programs Biomed. 153, 1–9 (2018). https://doi.org/10.1016/j.cmpb.2017.09.005

    Article  Google Scholar 

  38. Richter, A.N., Khoshgoftaar, T.M.: A review of statistical and machine learning methods for modeling cancer risk using structured clinical data. Artif. Intell. Med., vol. 90, pp. 1–14 (2018). https://doi.org/10.1016/j.artmed.2018.06.002

    Article  Google Scholar 

  39. El Houby, E.M.F.: A survey on applying machine learning techniques for management of diseases. J. Appl. Biomed. 16(3), 165–174 (2018). https://doi.org/10.1016/j.jab.2018.01.002

    Article  Google Scholar 

  40. R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria, (2014). http://www.R-project.org/

  41. Sardouk, F., Durub, A., Bayatc, O.: Classification of breast cancer using data mining. Am. Sci. Res. J. Eng. Tech. Sci. ASRJETS. 51(1), 38–46 (2019). https://www.google.com.mx/url?sa=t&rct=j&q=&esrc=s&source=web&cd=4&cad=rja&uact=8&ved=2ahUKEwiA2azMhOXiAhWKw1QKHayeB3wQFjADegQIBxAC&url=http%3A%2F%2Fasrjetsjournal.org%2Findex.php%2FAmerican_Scientific_Journal%2Farticle%2Fdownload%2F4585%2F1618&usg=AOvVaw2Nz-ktI_dBfW7aARwA1910

  42. Yixuan, L., Zixuan, C.: Performance evaluation of machine learning methods for breast cancer prediction. Appl. Comput. Math. 7(4), 212–216 (2018). https://doi.org/10.11648/j.acm.20180704.15

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balam Benítez-Mata .

Editor information

Editors and Affiliations

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Benítez-Mata, B., Castro, C., Castañeda, R., Vargas, E., Flores, DL. (2020). Prediction of Breast Cancer Diagnosis by Blood Biomarkers Using Artificial Neural Networks. In: González Díaz, C., et al. VIII Latin American Conference on Biomedical Engineering and XLII National Conference on Biomedical Engineering. CLAIB 2019. IFMBE Proceedings, vol 75. Springer, Cham. https://doi.org/10.1007/978-3-030-30648-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30648-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30647-2

  • Online ISBN: 978-3-030-30648-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics