Skip to main content

Comparative Analysis of Alpha Power Spectral Density in Real and Virtual Environments

  • Conference paper
  • First Online:
VIII Latin American Conference on Biomedical Engineering and XLII National Conference on Biomedical Engineering (CLAIB 2019)

Abstract

The virtual reality (VR) technology has been able to emulate physical places with realistic details, useful for multiple areas such as rehabilitation, education, entertainment, etc. This is possible because virtual environments can emulate the sense of “presence” that the user undergoes in the real world. The present study aimed to compare the typical videogame “Power Solitaire” in both scenarios, real and virtual one, by monitoring presence by estimating the alpha power spectral density on 14 electroencephalographic channels. As well, it was used three questionnaires (“Immersive Tendencies”, “Presence”, and “Slater Usoh-Steed”) to check the level of Presence. For this study, seven volunteers were recruited, and an Occulus Rift Headset and a headset “Emotiv epoc” were used. The study showed that “Power Solitaire” videogame rendered in VR mode induced the similar sense of presence experienced in the real world in accordance with (1) a good movement and auditory response of VR, (2) high quality of user-system interaction, and (3) similar level of alpha neural synchrony over the frontal lobe, which reflects sensory decoding, level of attention, and readiness to perform a task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chon, J., Kaongoen, N., Jo, S.: EEG signal analysis for measuring the quality of virtual reality, Busan (2015)

    Google Scholar 

  2. Mesárošová, A., Hernández, M.F., Mes, P., Behún, M.: Mixing Augmented reality and EEG technology to create an unique learning tool for construction process (2017)

    Google Scholar 

  3. Freeman, J.C.: EEG AR: things we have lost (2018). https://johncraigfreeman.wordpress.com/eeg-ar-things-we-have-lost/

  4. Mésárošová, A., Reality, A.A.: Art behind the mind exploring new art forms by implementation of the electroencephalography (2015)

    Google Scholar 

  5. Mercier-Ganady, J., Anatole, L.: The mind-mirror: see your brain in action in your head using EEG and augmented reality, vol. III, no. 8 (2014)

    Google Scholar 

  6. Riva, G.: Virtual reality in psychotherap: review, vol. VIII, no. 3, pp. 220-231 (2005)

    Article  MathSciNet  Google Scholar 

  7. Schultheis, M.T., Rizzo, A.A.: The application of virtual reality technology in rehabilitation. Rehabil. Psychol. XLVI(3), 296–311 (2001)

    Article  Google Scholar 

  8. Rizzo, A., Buckwalter, J.G., van der Zaag, C., Neumann, U.: Virtual environment applications in clinical neuropsychology. In: Proceedings IEEE Virtual Reality, pp. 63–70 (2000)

    Google Scholar 

  9. Rizzo, A.A., Schultheis, M., Kerns, K.A., Mateer, C.: Analysis of assets for virtual reality applications in neuropsychology. Neuropsychol. Rehabil. XIV(1), 207–240 (2004)

    Article  Google Scholar 

  10. Wiederhold, B.K., Rizzo, A.: Virtual reality and applied psychophysiology. Appl. Psychophysiol. Biofeedback XXX(3), 183–185 (2005)

    Article  Google Scholar 

  11. Soeiro, J., Cláudio, A.P., Carmo, M.B., Ferreira, H.A.: Mobile solution for brain visualization using augmented and virtual reality (2016)

    Google Scholar 

  12. Perani, D., Fazio, F., Borghese, N.A., Tettamanti, M., Ferrari, S., Decety, J.: Different brain correlates for watching real and virtual hand actions. Neuroimage 14, 749–758 (2001)

    Article  Google Scholar 

  13. Nagamine, S., Hayashi, Y., Yano, S., Kondo, T.: An immersive virtual reality system for investigating human bodily self-consciousness, pp. 3–6 (2016)

    Google Scholar 

  14. Sharma, G., Daniel, R.V.: Brain connectivity in spatial orientation task, pp. 1–4 (2016)

    Google Scholar 

  15. Steuer, J.: Defining virtual reality: dimensions determining telepresence (1992)

    Article  Google Scholar 

  16. Kober, S.E., Kurzmann, J., Neuper, C.: Cortical correlate of spatial presence in 2D and 3D interactive virtual reality: an EEG study. Int. J. Psychophysiol. LXXXIII(3), 365–374 (2012)

    Article  Google Scholar 

  17. Clemente, M., Rodríguez, A., Rey, B., Alcañiz, M.: Assessment of the influence of navigation control and screen size on the sense of presence in virtual reality using EEG. Expert Syst. Appl. XLI(4), 1584–1592 (2014)

    Article  Google Scholar 

  18. Slobounov, S.M., Ray, W., Johnson, B., Slobounov, E., Newell, K.M.: Modulation of cortical activity in 2D versus 3D virtual reality environments: an EEG study. Int. J. Psychophysiol. XCV(3), 254–260 (2015)

    Article  Google Scholar 

  19. Benedek, M., Bergner, S., Konen, T., Fink, A., Neubauer, A.C.: EEG alpha synchronization is related to top-down processing in convergent and divergent thinking. Neuropsychologia XLIX(2), 3505–3511 (2011)

    Article  Google Scholar 

  20. Kropotov, J.D.: Quantitative EEG, Event-Related Potentials and Neurotherapy. Academic Press-Elsevier, San Diego (2009)

    Google Scholar 

  21. Pineda, J.A.: The functional significance of mu rhythms: translating “seeing” and “hearing” into “doing”. Brain Res. Rev. L, 57–68 (2005)

    Article  Google Scholar 

  22. Oldfield, R.C.: The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia IX(1), 97–113 (1971)

    Article  Google Scholar 

  23. Witmer, B.G., Singer, M.J.: “Measuring presence in virtual environments: a presence questionnaire. Presence Teleoper. Virtual Environ. VII(3), 225–240 (1998)

    Article  Google Scholar 

  24. Usoh, M., Catena, E., Arman, S., Slater, M.: Using presence questionnaires in reality. Presence Teleoper. Virtual Environ. IX(5), 497–503 (2000)

    Article  Google Scholar 

  25. Delorme, A., Makeig, S.: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Neurosci. Methods 134, 9–21 (2004)

    Article  Google Scholar 

  26. Davidson, R., Pizzagalli, D.: Parsing the subcomponents of emotion and disorders of emotion: perspectives from affective neuroscience. Handb. Affect. Sci. 8–24 (2003)

    Google Scholar 

  27. Baumgartner, T.: Feeling present in arousing virtual reality worlds: prefrontal brain regions differentially orchestrate presence experience in adults and children. Front. Hum. Neurosci. 2(August), 1–12 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luz Maria Alonso-Valerdi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Romero-Soto, F.O., Ibarra-Zárate, D.I., Alonso-Valerdi, L.M. (2020). Comparative Analysis of Alpha Power Spectral Density in Real and Virtual Environments. In: González Díaz, C., et al. VIII Latin American Conference on Biomedical Engineering and XLII National Conference on Biomedical Engineering. CLAIB 2019. IFMBE Proceedings, vol 75. Springer, Cham. https://doi.org/10.1007/978-3-030-30648-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30648-9_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30647-2

  • Online ISBN: 978-3-030-30648-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics