Skip to main content

Biodiversity Analyses

  • Chapter
  • First Online:
Methods to Study Litter Decomposition
  • 1560 Accesses

Abstract

There is great concern about the ongoing decline of biodiversity. An important question is how this loss will affect ecosystem functioning. To approach this issue, we need to define biodiversity and choose appropriate methods to measure it. At its most basic level, diversity of a community may be expressed by the number of distinct species it contains (species richness). However, a community of a given richness where each species is equally represented is more diverse than a community of the same richness where a few species dominate. Both aspects (richness and evenness, i.e., the distribution of individuals among species) are essential when quantifying diversity. This chapter introduces important aspects to consider when estimating species richness. For meaningful comparisons of samples of different sizes, the diversity of communities may need to be adjusted by rarefaction. Or, we may estimate the expected diversity of a community by applying estimates based on species-area relationships. There are numerous indices of diversity, with the most popular measures based on information theory. The objective is to measure the degree of order (or disorder) in a system. The underlying question is: How difficult would it be to predict correctly the species of the next individual collected?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amann, R., & RossellĂł-MĂłra, R. (2016). After all, only millions? MBio, 7, e00999–e00916.

    PubMed  PubMed Central  Google Scholar 

  • Anderson, M. J., Crist, T. O., Chase, J. M., Vellend, M., Inouye, B. D., Freestone, A. L., Sanders, N. J., Cornelle, H. V., Comita, L. S., Davies, K. F., Harrison, S. P. L., Kraft, N. J. B., Stegen, J. C., & Swenson, N. G. (2011). Navigating the multiple meanings of Ăź diversity: A roadmap for the practicing ecologist. Ecology Letters, 14, 19–28.

    Article  PubMed  Google Scholar 

  • Bärlocher, F. (2000). Water-borne conidia of aquatic hyphomycetes: Seasonal and yearly patterns in catamaran brook, New Brunswick, Canada. Canadian Journal of Botany, 78, 157–167.

    Article  Google Scholar 

  • Bärlocher, F. (2005). Freshwater fungal communities. In J. Dighton, P. Oudemans, & J. White (Eds.), The fungal community (3rd ed.). New York: Dekker.

    Google Scholar 

  • Bärlocher, F. (2016). Aquatic hyphomycetes in a changing environment. Fungal Ecology, 19, 14–27.

    Article  Google Scholar 

  • Bärlocher, F., & Corkum, M. (2003). Nutrient enrichment overwhelms diversity effects in leaf decomposition by stream fungi. Oikos, 101, 247–252.

    Article  Google Scholar 

  • Cardinale, B. J., Duffy, J. E., Gonzalez, A., Hooper, D. U., Perrings, C., Venail, P., et al. (2012). Biodiversity loss and its impact on humanity. Nature, 486, 59–67.

    Article  CAS  PubMed  Google Scholar 

  • Chao, A. (1984). Non-parametric estimation of the number of classes in a population. Scandinavian Journal of Statistics, 11, 265–270.

    Google Scholar 

  • Colwell, R. K., Chao, A., Gotelli, N. J., Lin, S.-Y., Mao, C. X., Chazdon, R. L., & Longino, J. T. (2012). Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. Journal of Plant Ecology, 5, 3–21.

    Article  Google Scholar 

  • Covich, A. P., Austen, M. C., Bärlocher, F., Chauvet, E., Cardinale, B. J., Biles, C. L., Inchausti, P., Gessner, M. O., Dangles, O., Statzner, B., Solan, M., Moss, B. R., & Asmus, H. (2004). The role of biodiversity in the functioning of freshwater and marine benthic ecosystems: Current evidence and future research needs. Bioscience, 54, 767–775.

    Article  Google Scholar 

  • Cummins, K. W. (1973). Trophic relations of aquatic insects. Annual Review of Entomology, 18, 183–206.

    Article  Google Scholar 

  • Duarte, S., Cássio, F., Pascoal, C., & Bärlocher, F. (2017). Taxa-area relationship of aquatic fungi on deciduous leaves. PLoS One, 12, e0181545.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ehrlich, P. R., & Ehrlich, A. H. (1981). Extinction: The causes and consequences of the disappearance of species. New York: Random House.

    Google Scholar 

  • Foggo, A., Attrill, M. J., Frost, M. T., & Rowden, A. A. (2003). Estimating marine species richness: An evaluation of six extrapolative techniques. Marine Ecology Progress Series, 248, 15–26.

    Article  Google Scholar 

  • Frainer, A., Moretti, M. S., Xu, W., & Gessner, M. O. (2015). No evidence for leaf-trait dissimilarity effects on litter decomposition, fungal decomposers, and nutrient dynamics. Ecology, 96, 550–561.

    Article  PubMed  Google Scholar 

  • Gessner, M. O., Swan, C. M., Dang, C. K., McKie, B. G., Bardgett, R. D., Wall, D. H., & Hättenschwiler, S. (2010). Diversity meets decomposition. Trends in Ecology & Evolution, 25, 372–380.

    Article  Google Scholar 

  • Gönczöl, J., RĂ©vay, A., & Csontas, P. (2001). Effect of sample size on the detection of species and conidial numbers of aquatic hyphomycetes collected by membrane filtration. Archiv fĂĽr Hydrobiologie, 150, 677–691.

    Article  Google Scholar 

  • Gotelli, N. J., & Colwell, R. K. (2011). Estimating species richness. In A. E. Magurran & B. J. McGill (Eds.), Frontiers in measuring biodiversity (pp. 39–54). New York: Oxford University Press.

    Google Scholar 

  • Henderson, P., & Seaby, R. (2008). A practical handbook for multivariate methods. Pennington/Lymington/Hants: Pisces Conservation.

    Google Scholar 

  • Herron, J. C., & Freeman, S. (2014). Evolutionary analysis (5th ed.). Boston: Pearson.

    Google Scholar 

  • Hooper, D. U., Chapin, F. S., III, Ewel, J. J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J. H., Lodge, D. M., Loreau, M., Naeem, S., Schmid, B., Setälä, H., Synstad, A. J., Vandermeer, J., & Wardle, D. A. (2005). Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecological Monographs, 75, 3–35.

    Article  Google Scholar 

  • Jabiol, J., McKie, B. G., Bruder, A., Bernadet, C., Gessner, M. O., & Chauvet, E. (2013). Trophic complexity enhances ecosystem functioning in an aquatic detritus-based model system. Journal of Animal Ecology, 82, 1042–1051.

    Article  Google Scholar 

  • Jonsson, M., & Malmqvist, B. (2000). Ecosystem process rates increases with animal species richness: Evidence from leaf-eating, aquatic insects. Oikos, 89, 519–523.

    Article  Google Scholar 

  • Kinzig, A. P., Pacala, S. W., & Tilman, D. (Eds.). (2001). The functional consequences of biodiversity. Princeton: Princeton University Press.

    Google Scholar 

  • Krebs, C. J. (2014). Ecological methodology (3rd ed.). Menlo Park: Addison-Welsey.

    Google Scholar 

  • Laureto, L. M. O., Cianciaruso, M. V., & Samia, D. S. M. (2015). Functional diversity: An overview of its history and applicability. Natureza & Conservçao, 13, 112–116.

    Article  Google Scholar 

  • Locey, K. J., & Lennon, J. T. (2016). Scaling laws predict global microbial diversity. Proceedings of the National Academy of Sciences of the USA, 113, 5970–5975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pascoal, C., & Cássio, F. (2008). Linking fungal diversity to the functioning of freshwater ecosystems. In K. R. Sridhar, F. Bärlocher, & K. D. Hyde (Eds.), Novel techniques and ideas in mycology (Fungal diversity research series 20) (pp. 1–19). Hong Kong: Fungal Diversity Press.

    Google Scholar 

  • Petchey, O. L., O’Gorman, E. J., & Flynn, D. F. B. (2009). A functional guide to functional diversity measures. In S. Naeem, D. E. Bunker, A. Hector, M. Loreau, & C. Perrings (Eds.), Biodiversity, ecosystem functioning, and human wellbeing (pp. 49–59). Oxford: Oxford University Press.

    Chapter  Google Scholar 

  • Pielou, E. D. (1969). An introduction to mathematical ecology. New York: Wiley-Interscience.

    Google Scholar 

  • Ricotta, C. (2005). A note on functional diversity measures. Basic and Applied Ecology, 6, 479–486.

    Article  Google Scholar 

  • Rosenzweig, M. L. (1999). Species diversity. In J. McGlade (Ed.), Advanced ecological theory (pp. 249–281). Oxford: Blackwell.

    Chapter  Google Scholar 

  • Sanders, H. L. (1968). Marine benthic diversity: A comparative study. American Naturalist, 102, 243–282.

    Article  Google Scholar 

  • Schindler, M., & Gessner, M. O. (2009). Functional leaf traits and biodiversity effects on litter decomposition in a stream. Ecology, 90, 1641–1649.

    Article  PubMed  Google Scholar 

  • Simpson, E. H. (1949). Measurement of diversity. Nature, 163, 688.

    Article  Google Scholar 

  • Smith, B., & Wilson, J. B. (1996). A consumer’s guide to evenness indices. Oikos, 76, 70–82.

    Article  Google Scholar 

  • Socolar, J. B., Gilroy, J. J., Kunin, W. E., & Edwards, D. P. (2016). How should beta-diversity inform biodiversity conservation? Trends in Ecology & Evolution, 31, 67–80.

    Article  Google Scholar 

  • Srivastava, D. S., Cardinale, B. J., Downing, A. L., Duffy, J. E., Jouseau, C., Sankaran, M., & Wright, J. P. (2009). Diversity has stronger top-down than bottom-up effects on decomposition. Ecology, 90, 1073–1083.

    Article  PubMed  Google Scholar 

  • Sutherland, W. J. (1996). Ecological census techniques. A handbook. Cambridge: Cambridge University Press.

    Google Scholar 

  • Swan, C. M., & Palmer, M. A. (2004). Leaf diversity alters litter breakdown in a Piedmont stream. Journal of the North American Benthological Society, 23, 15–28.

    Article  Google Scholar 

  • Tuomisto, H. (2012). An updated consumer’s guide to evenness and related indices. Oikos, 121, 1203–1218.

    Article  Google Scholar 

  • Wardle, D. A. (2002). Communities and ecosystems. Linking the aboveground and belowground components. Princeton: Princeton University Press.

    Google Scholar 

  • Whittaker, R. H. (1972). Evolution and measurement of species diversity. Taxon, 21, 213–251.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Bärlocher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bärlocher, F. (2020). Biodiversity Analyses. In: Bärlocher, F., Gessner, M., Graça, M. (eds) Methods to Study Litter Decomposition. Springer, Cham. https://doi.org/10.1007/978-3-030-30515-4_61

Download citation

Publish with us

Policies and ethics