Skip to main content

Quantitative Real-Time PCR (qPCR) to Estimate Molecular Fungal Abundance

  • Chapter
  • First Online:
Methods to Study Litter Decomposition

Abstract

Fungi are key players in the decomposition of leaves in freshwaters. This functional role is maintained by a specifically adapted fungal community. To assess the quantitative contribution of single fungal species to the process, it is essential to determine their abundance. Quantitative real-time PCR (qPCR) is the prevalent method for this purpose, because it detects individual species of aquatic fungi in samples composed of multiple species. Quantitative PCR reactions are an extension of the traditional PCR method, which facilitates measuring the exponential amplification of a specific gene region via the emission of fluorescence signals in real time. This chapter describes how to design and validate a qPCR assay for fungal litter decomposers. The method uses a taxon-specific Taqman® probe labelled with a fluorescent reporter which hybridizes between two PCR primers. Due to the 5’-3’-exonuclease activity of DNA polymerase during PCR, the reporter dye is released and the emitted fluorescence is measured at 465–510 nm. Monitoring fungal taxa by qPCR assays opens excellent opportunities to gain new insights in microbial community ecology and ecosystem processes such as litter decomposition that are driven by fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Armbrecht, M. (2013). Detection of contamination in DNA and protein samples by photometric measurements. Eppendorf Application Note No. 279: 1–6.

    Google Scholar 

  • Bärlocher, F. (1992). The ecology of aquatic hyphomycetes. Berlin: Springer.

    Book  Google Scholar 

  • Bustin, S., & Huggett, J. (2017). qPCR primer design revisited. Biomolecular Detection and Quantification, 14, 19–28.

    Article  CAS  Google Scholar 

  • Bustin, S. A., Benes, V., Garson, J. A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl, M., Shipley, G. L., Vandesompele, J., & Wittwer, C. T. (2009). The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry, 55, 611–622.

    Article  CAS  Google Scholar 

  • Bustin, S. A., Beaulieu, J. F., Huggett, J., Jaggi, R., Kibenge, F. S., Olsvik, P. A., Penning, L. C., & Toegel, S. (2010). MIQE precis: Practical implementation of minimum standard guidelines for fluorescence-based quantitative real-time PCR experiments. BMC Molecular Biology, 11, 74.

    Article  Google Scholar 

  • Fernandes, I., Pascoal, C., & Cássio, F. (2011). Intraspecific traits change biodiversity effects on ecosystem functioning under metal stress. Oecologia, 166, 1019–1028.

    Article  Google Scholar 

  • Gehesquière, B., D’Haeyer, S., Pham, K. T. K., Van Kuik, A. J., Maes, M., Höfte, M., & Heungens, K. (2013). qPCR assays for the detection of Cylindrocladium buxicola in plant, water, and air samples. Plant Disease, 97, 1082–1090.

    Article  Google Scholar 

  • Gessner, M. O., Gulis, V., Kuehn, K. A., Chauvet, E., & Suberkropp, K. (2007). Fungal decomposers of plant litter in aquatic ecosystems. In C. P. Kubicek & I. S. Druzhinina (Eds.), The Mycota, Vol. 4: Environmental and microbial relationships (2nd ed., pp. 301–324). Berlin: Springer.

    Google Scholar 

  • Holland, P. M., Abramson, R. D., Watson, R., & Gelfand, D. H. (1991). Detection of specific polymerase chain reaction product by utilizing the 5′–3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proceedings of the National Academy of Sciences of the USA, 88, 7276–7280.

    Article  CAS  Google Scholar 

  • Kontanis, E. J., & Reed, F. A. (2006). Evaluation of real-time PCR amplification efficiencies to detect PCR inhibitors. Journal of Forensic Sciences, 51, 795–804.

    Article  CAS  Google Scholar 

  • Kubista, M., Andrade, J. M., Bengtsson, M., Forootan, A., Jonák, J., Lind, K., Radek, S., Sjöback, R., Sjögreen, B., Strömbom, L., Ståhlberg, A., & Zoric, N. (2006). The real-time polymerase chain reaction. Molecular Aspects of Medicine, 27, 95–125.

    Article  CAS  Google Scholar 

  • Lefèvre, E., Jobard, M., Venisse, J. S., Bec, A., Kagami, M., Amblard, C., & Sime-Ngando, T. (2010). Development of a real-time PCR assay for quantitative assessment of uncultured freshwater zoosporic fungi. Journal of Microbiological Methods, 81, 69–76.

    Article  Google Scholar 

  • Rossi, F., Artigas, J., & Mallet, C. (2017). Structural and functional responses of leaf-associated fungal communities to chemical pollution in streams. Freshwater Biology, 62, 1207–1219.

    Article  CAS  Google Scholar 

  • Ruijter, J. M., Ramakers, C., Hoogaars, W. M. H., Karlen, Y., Bakker, O., Van den Hoff, M. J. B., & Moorman, A. F. M. (2009). Amplification efficiency: Linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Research, 37, e45.

    Article  CAS  Google Scholar 

  • Ruijter, J. M., Pfaffl, M. W., Zhao, S., Spiess, A. N., Boggy, G., Blom, J., Rutledge, R. G., Sisti, D., Lievens, A., De Preter, K., Derveaux, S., Hellemans, J., & Vandesompele, J. (2013). Evaluation of qPCR curve analysis methods for reliable biomarker discovery: Bias, resolution, precision, and implications. Methods, 59, 32–46.

    Article  CAS  Google Scholar 

  • Ruijter, J. M., Lorenz, P., Tuomi, J. M., Hecker, M., & van den Hoff, M. J. B. (2014). Fluorescent-increase kinetics of different fluorescent reporters used for qPCR depend on monitoring chemistry, targeted sequence, type of DNA input and PCR efficiency. Microchimica Acta, 181, 1689–1696.

    Article  CAS  Google Scholar 

  • Schoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., Levesque, C. A., Chen, W., & Fungal Barcording Consortium (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences of the USA, 109, 6241–6246.

    Google Scholar 

  • Töwe, S., Kleineidam, K., & Schloter, M. (2010). Differences in amplification efficiency of standard curves in quantitative real-time PCR assays and consequences for gene quantification in environmental samples. Journal of Microbiological Methods, 82, 338–341.

    Article  Google Scholar 

  • Tsui, C. K., Baschien, C., & Goh, T. K. (2016). Biology and ecology of freshwater fungi. In D. W. Li (Ed.), Biology of Microfungi (pp. 285–313). Cham: Springer.

    Chapter  Google Scholar 

  • Tuomi, J. M., Voorbraak, F., Jones, D. L., & Ruijter, J. M. (2010). Bias in the Cq value observed with hydrolysis probe based quantitative PCR can be corrected with the estimated PCR efficiency value. Methods, 50, 313–322.

    Google Scholar 

  • Zubrod, J. P., Englert, D., Feckler, A., Koksharova, N., Konschak, M., Bundschuh, R., Schnetzer, N., Englert, K., Schulz, R., & Bundschuh, M. (2015). Does the current fungicide risk assessment provide sufficient protection for key drivers in aquatic ecosystem functioning? Environmental Science & Technology, 49, 1173–1181.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christiane Baschien .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baschien, C., Carl, S.C. (2020). Quantitative Real-Time PCR (qPCR) to Estimate Molecular Fungal Abundance. In: Bärlocher, F., Gessner, M., Graça, M. (eds) Methods to Study Litter Decomposition. Springer, Cham. https://doi.org/10.1007/978-3-030-30515-4_36

Download citation

Publish with us

Policies and ethics