Skip to main content

Characteristics of Visual Electrophysiology in the Diseases of Optic Nerve or Visual Pathway

  • Chapter
  • First Online:
Handbook of Clinical Electrophysiology of Vision
  • 855 Accesses

Abstract

This chapter summarizes the application of electrophysiologic tests in diseases associated with optic nerve or higher visual pathway dysfunction. Electrophysiologic test results are shown in amblyopia, Leber’s hereditary optic neuropathy, multiple sclerosis, ischemic optic neuropathy, optic neuritis, optic nerve hypoplasia, traumatic optic neuropathy, neurofibromatosis, and optic nerve toxicities that can provide clinicians information for differential diagnoses. In addition, this chapter will help clinicians choose suitable electrophysiologic tests in specific patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alshuaib WB. Progression of visual evoked potential abnormalities in multiple sclerosis and optic neuritis. Electromyogr Clin Neurophysiol. 2000;40(4):243–52.

    CAS  PubMed  Google Scholar 

  2. Hamurcu M, et al. Analysis of multiple sclerosis patients with electrophysiological and structural tests. Int Ophthalmol. 2017;37(3):649–53.

    PubMed  Google Scholar 

  3. Hayreh SS. Posterior ischaemic optic neuropathy: clinical features, pathogenesis, and management. Eye (Lond). 2004;18(11):1188–206.

    CAS  Google Scholar 

  4. Hayreh SS. Blood supply of the optic nerve head and its role in optic atrophy, glaucoma, and oedema of the optic disc. Br J Ophthalmol. 1969;53(11):721–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Isayama Y, et al. Posterior ischemic optic neuropathy. I. Blood supply of the optic nerve. Ophthalmologica. 1983;186(4):197–203.

    CAS  PubMed  Google Scholar 

  6. Nuttall GA, et al. Risk factors for ischemic optic neuropathy after cardiopulmonary bypass: a matched case/control study. Anesth Analg. 2001;93(6):1410–6.

    CAS  Google Scholar 

  7. Ho VT, et al. Ischemic optic neuropathy following spine surgery. J Neurosurg Anesthesiol. 2005;17(1):38–44.

    PubMed  PubMed Central  Google Scholar 

  8. Buono LM, Foroozan R. Perioperative posterior ischemic optic neuropathy: review of the literature. Surv Ophthalmol. 2005;50(1):15–26.

    PubMed  Google Scholar 

  9. Lee LA, et al. The American Society of Anesthesiologists Postoperative Visual Loss Registry: analysis of 93 spine surgery cases with postoperative visual loss. Anesthesiology. 2006;105(4):652–9; quiz 867–8.

    PubMed  Google Scholar 

  10. Tormene AP, et al. Electrophysiological findings in anterior ischemic optic neuropathy. Metab Pediatr Syst Ophthalmol (1985). 1989;12(1–3):76–9.

    CAS  Google Scholar 

  11. Holder GE. Electrophysiological assessment of optic nerve disease. Eye (Lond). 2004;18(11):1133–43.

    CAS  Google Scholar 

  12. Buono LM, et al. Posterior ischemic optic neuropathy after hemodialysis. Ophthalmology. 2003;110(6):1216–8.

    PubMed  Google Scholar 

  13. Murphy MA. Bilateral posterior ischemic optic neuropathy after lumbar spine surgery. Ophthalmology. 2003;110(7):1454–7.

    PubMed  Google Scholar 

  14. Jayaraman M, et al. Multifocal visual evoked potential in optic neuritis, ischemic optic neuropathy and compressive optic neuropathy. Indian J Ophthalmol. 2014;62(3):299–304.

    PubMed  PubMed Central  Google Scholar 

  15. Fraser CL, Holder GE. Electroretinogram findings in unilateral optic neuritis. Doc Ophthalmol. 2011;123(3):173–8.

    PubMed  Google Scholar 

  16. McCulloch DL, et al. Retinal function in infants with optic nerve hypoplasia: electroretinograms to large patterns and photopic flash. Eye (Lond). 2007;21(6):712–20.

    CAS  Google Scholar 

  17. McCulloch DL, et al. Clinical electrophysiology and visual outcome in optic nerve hypoplasia. Br J Ophthalmol. 2010;94(8):1017–23.

    CAS  PubMed  Google Scholar 

  18. Cibis GW, Fitzgerald KM. Optic nerve hypoplasia in association with brain anomalies and an abnormal electroretinogram. Doc Ophthalmol. 1994;86(1):11–22.

    CAS  PubMed  Google Scholar 

  19. Ikejiri M, et al. Pattern visual evoked potentials in traumatic optic neuropathy. Ophthalmologica. 2002;216(6):415–9.

    PubMed  Google Scholar 

  20. Jabbari B, et al. The value of visual evoked potential as a screening test in neurofibromatosis. Arch Neurol. 1985;42(11):1072–4.

    CAS  PubMed  Google Scholar 

  21. Iannaccone A, et al. Visual evoked potentials in children with neurofibromatosis type 1. Doc Ophthalmol. 2002;105(1):63–81.

    PubMed  Google Scholar 

  22. North K, et al. Optic gliomas in neurofibromatosis type 1: role of visual evoked potentials. Pediatr Neurol. 1994;10(2):117–23.

    CAS  PubMed  Google Scholar 

  23. Lubinski W, et al. Supernormal electro-oculograms in patients with neurofibromatosis type 1. Hered Cancer Clin Pract. 2004;2(4):193–6.

    PubMed  PubMed Central  Google Scholar 

  24. Lubinski W, et al. Electro-oculogram in patients with neurofibromatosis type 1. Doc Ophthalmol. 2001;103(2):91–103.

    CAS  PubMed  Google Scholar 

  25. Kim KL, Park SP. Visual function test for early detection of ethambutol induced ocular toxicity at the subclinical level. Cutan Ocul Toxicol. 2016;35(3):228–32.

    CAS  PubMed  Google Scholar 

  26. Yiannikas C, Walsh JC, McLeod JG. Visual evoked potentials in the detection of subclinical optic toxic effects secondary to ethambutol. Arch Neurol. 1983;40(10):645–8.

    CAS  PubMed  Google Scholar 

  27. Goyal JL, et al. Evaluation of visual functions in patients on ethambutol therapy for tuberculosis: a prospective study. J Commun Dis. 2003;35(4):230–43.

    PubMed  Google Scholar 

  28. Chen YJ, Kang WM. Effects of bilirubin on visual evoked potentials in term infants. Eur J Pediatr. 1995;154(8):662–6.

    CAS  PubMed  Google Scholar 

  29. Mihalcea O, Arnold AC. Side effect of head and neck radiotherapy: optic neuropathy. Oftalmologia. 2008;52(1):36–40.

    PubMed  Google Scholar 

  30. Danesh-Meyer HV. Radiation-induced optic neuropathy. J Clin Neurosci. 2008;15(2):95–100.

    PubMed  Google Scholar 

  31. Hu WH, et al. Impairment of optic path due to radiotherapy for nasopharyngeal carcinoma. Doc Ophthalmol. 2003;107(2):101–10.

    PubMed  Google Scholar 

  32. Wallace DC, et al. Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science. 1988;242(4884):1427–30.

    CAS  PubMed  Google Scholar 

  33. Vergani L, et al. MtDNA mutations associated with Leber’s hereditary optic neuropathy: studies on cytoplasmic hybrid (cybrid) cells. Biochem Biophys Res Commun. 1995;210(3):880–8.

    CAS  PubMed  Google Scholar 

  34. Soldath P, et al. Leber hereditary optic neuropathy due to a new ND1 mutation. Ophthalmic Genet. 38(5):480–5.

    CAS  PubMed  Google Scholar 

  35. Saikia BB, et al. Whole mitochondrial genome analysis in South Indian patients with Leber’s hereditary optic neuropathy. Mitochondrion. 2017;36:21–8.

    CAS  PubMed  Google Scholar 

  36. Dorfman LJ, et al. Visual evoked potentials in Leber’s hereditary optic neuropathy. Ann Neurol. 1977;1(6):565–8.

    CAS  PubMed  Google Scholar 

  37. Salomao SR, et al. Visual electrophysiologic findings in patients from an extensive Brazilian family with Leber’s hereditary optic neuropathy. Doc Ophthalmol. 2004;108(2):147–55.

    PubMed  Google Scholar 

  38. Arden GB, Barnard WM, Mushin AS. Visually evoked responses in amblyopia. Br J Ophthalmol. 1974;58(3):183–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wanger P, Persson HE. Visual evoked responses to pattern-reversal stimulation in childhood amblyopia. Acta Ophthalmol. 1980;58(5):697–706.

    CAS  Google Scholar 

  40. Davis ET, Bass SJ, Sherman J. Flash visual evoked potential (VEP) in amblyopia and optic nerve disease. Optom Vis Sci. 1995;72(9):612–8.

    CAS  PubMed  Google Scholar 

  41. Yu M, Brown B, Edwards MH. Investigation of multifocal visual evoked potential in anisometropic and esotropic amblyopes. Invest Ophthalmol Vis Sci. 1998;39(11):2033–40.

    CAS  Google Scholar 

  42. Sengpiel F, Blakemore C. The neural basis of suppression and amblyopia in strabismus. Eye (Lond). 1996;10(Pt 2):250–8.

    Google Scholar 

  43. Sireteanu R, Fronius M. Naso-temporal asymmetries in human amblyopia consequence of long-term interocular suppression. Vision Res. 1981;21(7):1055–63.

    CAS  PubMed  Google Scholar 

  44. Moschos MM, et al. Multifocal visual evoked potentials in amblyopia due to anisometropia. Clin Ophthalmol. 2010;4:849–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Perez-Rico C, et al. Evaluation of visual function and retinal structure in adult amblyopes. Optom Vis Sci. 2015;92(3):375–83.

    PubMed  Google Scholar 

  46. Arden GB, Wooding SL. Pattern ERG in amblyopia. Invest Ophthalmol Vis Sci. 1985;26(1):88–96.

    CAS  PubMed  Google Scholar 

  47. Ikeda H, Tremain KE. Amblyopia occurs in retinal ganglion cells in cats reared with convergent squint without alternating fixation. Exp Brain Res. 1979;35(3):559–82.

    CAS  PubMed  Google Scholar 

  48. Wanger P, Persson HE. Oscillatory potentials, flash and pattern-reversal electroretinograms in amblyopia. Acta Ophthalmol. 1984;62(4):643–50.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minzhong Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yu, M., Creel, D. (2019). Characteristics of Visual Electrophysiology in the Diseases of Optic Nerve or Visual Pathway. In: Yu, M., Creel, D., Iannaccone, A. (eds) Handbook of Clinical Electrophysiology of Vision. Springer, Cham. https://doi.org/10.1007/978-3-030-30417-1_10

Download citation

Publish with us

Policies and ethics