Skip to main content

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 24))

Abstract

A wide variety of plant species provide edible seeds. Seeds are the dominant source of human calories and protein. The most important and popular seed food sources are cereals, followed by legumes and nuts. Their nutritional content of fiber, protein, and monounsaturated/polyunsaturated fats make them extremely nutritious. They are important additions to our daily food consumption. When consumed as part of a healthy diet, seeds can help reduce blood sugar, cholesterol, and blood pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Taddeo, V. A., Genovese, S., Medina, P., Palmisano, R., Epifano, F., & Fiorito, S. (2017). Quantification of biologically active O-prenylated and unprenylated phenylpropanoids in dill (Anethum graveolens), anise (Pimpinella anisum), and wild celery (Angelica archangelica). Journal of Pharmaceutical and Biomedical Analysis, 134, 319–324.

    Article  CAS  PubMed  Google Scholar 

  2. Kozlowska, M., Gruczyńska, E., Ścibisz, I., & Rudzińska, M. (2016). Fatty acids and sterols composition, and antioxidant activity of oils extracted from plant seeds. Food Chemistry, 213, 450–456.

    Article  CAS  PubMed  Google Scholar 

  3. Koeduka, T., Baiga, T. J., Noel, J. P., & Pichersky, E. (2009). Biosynthesis of t-anethole in anise: Characterization of t-anol/isoeugenol synthase and an O-methyltransferase specific for a C7-C8 propenyl side chain. Plant Physiology, 149(1), 384–394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Denev, R. V., Kuzmanova, I. S., Momchilova, S. M., & Nikolova-Damyanova, B. M. (2011). Resolution and quantification of isomeric fatty acids by silver ion HPLC: Fatty acid composition of aniseed oil (Pimpinella anisum, Apiaceae). Journal of AOAC International, 94(1), 4–8.

    CAS  PubMed  Google Scholar 

  5. Pickrahn, S., Sebald, K., & Hofmann, T. (2014). Application of 2D-HPLC/taste dilution analysis on taste compounds in aniseed (Pimpinella anisum L.). Journal of Agricultural and Food Chemistry, 62(38), 9239–9245.

    Article  CAS  PubMed  Google Scholar 

  6. Shojaii, A., & Abdollahi Fard, M. (2012). Review of pharmacological properties and chemical constituents of Pimpinella anisum. ISRN Pharmaceutics, 2012, 510795–510795.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yashin, A., Yashin, Y., Xia, X., & Nemzer, B. (2017). Antioxidant activity of spices and their impact on human health: A review. Antioxidants (Basel, Switzerland), 6(3), 70.

    Google Scholar 

  8. Badgujar, S. B., Patel, V. V., & Bandivdekar, A. H. (2014). Foeniculum vulgare mill: A review of its botany, phytochemistry, pharmacology, contemporary application, and toxicology. BioMed Research International, 2014, 842674.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mohamad, R. H., El-Bastawesy, A. M., Abdel-Monem, M. G., Noor, A. M., Al-Mehdar, H. A., Sharawy, S. M., et al. (2011). Antioxidant and anticarcinogenic effects of methanolic extract and volatile oil of fennel seeds (Foeniculum vulgare). Journal of Medicinal Food, 14(9), 986–1001.

    Article  CAS  PubMed  Google Scholar 

  10. Larijani, B., Esfahani, M. M., Moghimi, M., Shams Ardakani, M. R., Keshavarz, M., Kordafshari, G., et al. (2016). Prevention and treatment of flatulence from a traditional Persian medicine perspective. Iranian Red Crescent Medical Journal, 18(4), e23664.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Babaeian, M., Naseri, M., Kamalinejad, M., Ghaffari, F., Emadi, F., Feizi, A., et al. (2015). Herbal remedies for functional dyspepsia and traditional Iranian medicine perspective. Iranian Red Crescent Medical Journal, 17(11), e20741.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Al Mofleh, I. A., Alhaider, A. A., Mossa, J. S., Al-Soohaibani, M. O., & Rafatullah, S. (2007). Aqueous suspension of anise “Pimpinella anisum” protects rats against chemically induced gastric ulcers. World Journal of Gastroenterology, 13(7), 1112–1118.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Al Mofleh, I. A. (2010). Spices, herbal xenobiotics and the stomach: Friends or foes? World Journal of Gastroenterology, 16(22), 2710–2719.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sumbul, S., Ahmad, M. A., Mohd, A., & Mohd, A. (2011). Role of phenolic compounds in peptic ulcer: An overview. Journal of Pharmacy & Bioallied Sciences, 3(3), 361–367.

    Article  CAS  Google Scholar 

  15. Ghoshegir, S. A., Mazaheri, M., Ghannadi, A., Feizi, A., Babaeian, M., Tanhaee, M., et al. (2015). Pimpinella anisum in the treatment of functional dyspepsia: A double-blind, randomized clinical trial. Journal of Research in Medical Sciences : The Official Journal of Isfahan University of Medical Sciences, 20(1), 13–21.

    Google Scholar 

  16. Ghoshegir, S. A., Mazaheri, M., Ghannadi, A., Feizi, A., Babaeian, M., Tanhaee, M., et al. (2014). Pimpinella anisum in modifying the quality of life in patients with functional dyspepsia: A double-blind randomized clinical trial. Journal of Research in Medical Sciences : The Official Journal of Isfahan University of Medical Sciences, 19(12), 1118–1123.

    Google Scholar 

  17. Picon, P. D., Picon, R. V., Costa, A. F., Sander, G. B., Amaral, K. M., Aboy, A. L., et al. (2010). Randomized clinical trial of a phytotherapic compound containing Pimpinella anisum, Foeniculum vulgare, Sambucus nigra, and Cassia augustifolia for chronic constipation. BMC Complementary and Alternative Medicine, 10, 17.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kunnumakkara, A. B., Sailo, B. L., Banik, K., Harsha, C., Prasad, S., Gupta, S. C., et al. (2018). Chronic diseases, inflammation, and spices: How are they linked? Journal of Translational Medicine, 16(1), 14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Agarwal, A. K. (2014). Spice up your life: Adipose tissue and inflammation. Journal of Lipids, 2014, 182575.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tas, A., Ozbek, H., Atasoy, N., Altug, M. E., & Ceylan, E. (2006). Evaluation of analgesic and antiinflammatory activity of Pimpinella anisum fixed oil extract. The Indian Veterinary Journal, 83(8), 840–843.

    Google Scholar 

  21. Ritter, A. M. V., Ames, F. Q., Otani, F., de Oliveira, R. M., Cuman, R. K., & Bersani-Amado, C. A. (2014). Effects of anethole in nociception experimental models. Evidence-based Complementary and Alternative Medicine, 2014, 345829.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Haggag, E. G., Abou-Moustafa, M. A., Boucher, W., & Theoharides, T. C. (2003). The effect of a herbal water-extract on histamine release from mast cells and on allergic asthma. Journal of Herbal Pharmacotherapy, 3(4), 41–54.

    Article  PubMed  Google Scholar 

  23. Sánchez-Vidaña, D. I., Ngai, S. P., He, W., Chow, J. K., Lau, B. W., & Tsang, H. W. (2017). The effectiveness of aromatherapy for depressive symptoms: A systematic review. Evidence-Based Complementary and Alternative Medicine, 2017, 5869315.

    PubMed  PubMed Central  Google Scholar 

  24. Shahamat, Z., Abbasi-Maleki, S., & Mohammadi Motamed, S. (2016). Evaluation of antidepressant-like effects of aqueous and ethanolic extracts of Pimpinella anisum fruit in mice. Avicenna Journal of Phytomedicine, 6(3), 322–328.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Mosaffa-Jahromi, M., Tamaddon, A. M., Afsharypuor, S., Salehi, A., Seradj, S. H., Pasalar, M., et al. (2017). Effectiveness of Anise oil for treatment of mild to moderate depression in patients with irritable bowel syndrome: A randomized active and placebo-controlled clinical trial. Evidence-Based Complementary and Alternative Medicine, 22(1), 41–46.

    Article  Google Scholar 

  26. Karimzadeh, F., Hosseini, M., Mangeng, D., Alavi, H., Hassanzadeh, G. R., Bayat, M., et al. (2012). Anticonvulsant and neuroprotective effects of Pimpinella anisum in rat brain. BMC Complementary and Alternative Medicine, 12, 76.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Albert-Puleo, M. (1980). Fennel and anise as estrogenic agents. Journal of Ethnopharmacology, 2(4), 337–344.

    Article  CAS  PubMed  Google Scholar 

  28. Saeed, I. A., Ali, L., Jabeen, A., Khasawneh, M., Rizvi, T. A., & Ashraf, S. S. (2012). Estrogenic activities of ten medicinal herbs from the Middle East. Journal of Chromatographic Science, 51(1), 33–39.

    Article  CAS  PubMed  Google Scholar 

  29. Tabanca, N., Khan, S. I., Bedir, E., Annavarapu, S., Willett, K., Khan, I. A., et al. (2004). Estrogenic activity of isolated compounds and essential oils of Pimpinella species from Turkey, evaluated using a recombinant yeast screen. Planta Medica, 70(8), 728–735.

    Article  CAS  PubMed  Google Scholar 

  30. Nahidi, F., Kariman, N., Simbar, M., & Mojab, F. (2012). The study on the effects of Pimpinella anisum on relief and recurrence of menopausal hot flashes. Iranian Journal of Pharmaceutical Research, 11(4), 1079–1085.

    PubMed  PubMed Central  Google Scholar 

  31. Mannion, C., & Mansell, D. (2012). Breastfeeding self-efficacy and the use of prescription medication: A pilot study. Obstetrics and Gynecology International, 2012, 562704.

    Article  PubMed  Google Scholar 

  32. Drugs and Lactation Database (LactMed). (2006). Anise. Bethesda, MD: National Library of Medicine (US).

    Google Scholar 

  33. Mhaidat, N. M., Abu-zaiton, A. S., Alzoubi, K. H., Alzoubi, W., & Alazab, R. S. (2015). Antihyperglycemic properties of Foeniculum vulgare extract in streptozocin-induced diabetes in rats. International Journal of Pharmacology, 11, 72–75.

    Article  CAS  Google Scholar 

  34. Sheikh, B. A., Pari, L., Rathinam, A., & Chandramohan, R. (2015). Trans-anethole, a terpenoid ameliorates hyperglycemia by regulating key enzymes of carbohydrate metabolism in streptozotocin induced diabetic rats. Biochimie, 112, 57–65.

    Article  CAS  PubMed  Google Scholar 

  35. Jamous, R. M., Abu-Zaitoun, S. Y., Akkawi, R. J., & Ali-Shtayeh, M. S. (2018). Antiobesity and antioxidant potentials of selected Palestinian medicinal plants. Evidence-Based Complementary and Alternative Medicine, 2018, 8426752.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bae, J., Kim, J., Choue, R., & Lim, H. (2015). Fennel (Foeniculum vulgare) and fenugreek (Trigonella foenum-graecum) tea drinking suppresses subjective short-term appetite in overweight women. Clinical Nutrition Research, 4(3), 168–174.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chouhan, S., Sharma, K., & Guleria, S. (2017). Antimicrobial activity of some essential oils-present status and future perspectives. Medicines (Basel, Switzerland), 4(3), 58.

    Google Scholar 

  38. D’Souza, S. P., Chavannavar, S. V., Kanchanashri, B., & Niveditha, S. B. (2017). Pharmaceutical perspectives of spices and condiments as alternative antimicrobial remedy. Evidence-Based Complementary and Alternative Medicine, 22(4), 1002–1010.

    Article  CAS  Google Scholar 

  39. Liu, Q., Meng, X., Li, Y., Zhao, C. N., Tang, G. Y., & Li, H. B. (2017). Antibacterial and antifungal activities of spices. International Journal of Molecular Sciences, 18(6), 1283.

    Article  CAS  PubMed Central  Google Scholar 

  40. Shreaz, S., Bhatia, R., Khan, N., Muralidhar, S., Basir, S. F., Manzoor, N., et al. (2011). Exposure of Candida to p-anisaldehyde inhibits its growth and ergosterol biosynthesis. The Journal of General and Applied Microbiology, 57(3), 129–136.

    Article  CAS  PubMed  Google Scholar 

  41. Hitokoto, H., Morozumi, S., Wauke, T., Sakai, S., & Kurata, H. (1980). Inhibitory effects of spices on growth and toxin production of toxigenic fungi. Applied and Environmental Microbiology, 39(4), 818–822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kosalec, I., Pepeljnjak, S., & Kustrak, D. (2005). Antifungal activity of fluid extract and essential oil from anise fruits (Pimpinella anisum L., Apiaceae). Acta Pharmaceutica, 55(4), 377–385.

    CAS  PubMed  Google Scholar 

  43. Orchard, A., & van Vuuren, S. (2017). Commercial essential oils as potential antimicrobials to treat skin diseases. Evidence-based Complementary and Alternative Medicine, 2017, 4517971.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Musa Gomaa Kdam, R., Gabra, N., & Eltayb, A. A. (2017). Identification of Anise seed oils and their antimicrobial and antioxidant activities. Red Sea University Journal of Basic and Applied Science, 2, 232.

    Google Scholar 

  45. Mohamed, H. S. A. A., Abdelgadir, W. S., & Almagboul, A. (2015). In vitro antimicrobial activity of anise seed (Pimpinella anisum L.). International Journal of Advanced Research, 3, 359–367.

    CAS  Google Scholar 

  46. Al-Bayati, F. A. (2008). Synergistic antibacterial activity between Thymus vulgaris and Pimpinella anisum essential oils and methanol extracts. Journal of Ethnopharmacology, 116(3), 403–406.

    Article  CAS  PubMed  Google Scholar 

  47. Lee, J. B., Yamagishi, C., Hayashi, K., & Hayashi, T. (2011). Antiviral and immunostimulating effects of lignin-carbohydrate-protein complexes from Pimpinella anisum. Bioscience, Biotechnology, and Biochemistry, 75(3), 459–465.

    Article  CAS  PubMed  Google Scholar 

  48. Zahid, M. S. H., Awasthi, S. P., Hinenoya, A., & Yamasaki, S. (2015). Anethole inhibits growth of recently emerged multidrug resistant toxigenic Vibrio cholerae O1 El Tor variant strains in vitro. The Journal of Veterinary Medical Science, 77(5), 535–540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ibrahim, M. K., Zakaria Ahmed Mattar, Z. A., Abdel-Khalek, H. H., & Azzam, Y. M. (2016). Evaluation of antibacterial efficacy of anise wastes against some multidrug resistant bacterial isolates. Journal of Radiation Research and Applied Sciences, 10, 34–43.

    Article  CAS  Google Scholar 

  50. Montbriand, M. J. (2004). Herbs or natural products that increase cancer growth or recurrence. Part two of a four-part series. Oncology Nursing Forum, 31(5), E99–E115.

    Article  PubMed  Google Scholar 

  51. Özgüven, M. (2012). 7 - Aniseed. In K. V. Peter (Ed.), Handbook of herbs and spices (2nd ed., pp. 138–150). Cambridge, UK: Woodhead Publishing.

    Chapter  Google Scholar 

  52. Samojlik, I., Mijatović, V., Petković, S., Skrbić, B., & Božin, B. (2012). The influence of essential oil of aniseed (Pimpinella anisum, L.) on drug effects on the central nervous system. Fitoterapia, 83(8), 1466–1473.

    Article  CAS  PubMed  Google Scholar 

  53. Kajla, P., Sharma, A., & Sood, D. R. (2015). Flaxseed-a potential functional food source. Journal of Food Science and Technology, 52(4), 1857–1871.

    Article  CAS  PubMed  Google Scholar 

  54. Goyal, A., Sharma, V., Upadhyay, N., Gill, S., & Sihag, M. (2014). Flax and flaxseed oil: An ancient medicine & modern functional food. Journal of Food Science and Technology, 51(9), 1633–1653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Touré, A., & Xueming, X. (2010). Flaxseed Lignans: Source, biosynthesis, metabolism, antioxidant activity, bio-active components, and health benefits. Comprehensive Reviews in Food Science and Food Safety, 9(3), 261–269.

    Article  PubMed  Google Scholar 

  56. Rabetafika, H. N., Van Remoortel, V., Danthine, S., Paquot, M., & Blecker, C. (2011). Flaxseed proteins: Food uses and health benefits. International Journal of Food Science and Technology, 46(2), 221–228.

    Article  CAS  Google Scholar 

  57. Shim, Y., Gui, B., Arnison, P. G., Wang, Y., & Reaney, M. J. (2014). Flaxseed (Linum usitatissimum L.) bioactive compounds and peptide nomenclature: A review. Trends in Food Science & Technology, 38(1), 5–20.

    Article  CAS  Google Scholar 

  58. Parikh, M., Netticadan, T., & Pierce, G. N. (2018). Flaxseed: Its bioactive components and their cardiovascular benefits. American Journal of Physiology. Heart and Circulatory Physiology, 314(2), H146–H159.

    Article  CAS  PubMed  Google Scholar 

  59. Witkowska, A. M., Waśkiewicz, A., Zujko, M. E., Szcześniewska, D., Stepaniak, U., Pająk, A., et al. (2018). Are total and individual dietary lignans related to cardiovascular disease and its risk factors in postmenopausal women? A nationwide study. Nutrients, 10(7), 865.

    Article  CAS  PubMed Central  Google Scholar 

  60. Peterson, J., Dwyer, J., Adlercreutz, H., Scalbert, A., Jacques, P., & McCullough, M. L. (2010). Dietary lignans: Physiology and potential for cardiovascular disease risk reduction. Nutrition Reviews, 68(10), 571–603.

    Article  PubMed  Google Scholar 

  61. Prasad, K. (2009). Flaxseed and cardiovascular health. Journal of Cardiovascular Pharmacology, 54(5), 369–377.

    Article  CAS  PubMed  Google Scholar 

  62. Bloedon, L. T., Balikai, S., Chittams, J., Cunnane, S. C., Berlin, J. A., Rader, D., et al. (2008). Flaxseed and cardiovascular risk factors: Results from a double blind, randomized, controlled clinical trial. Journal of the American College of Nutrition, 27(1), 65–74.

    Article  CAS  PubMed  Google Scholar 

  63. Dodin, S., Cunnane, S. C., Mâsse, B., Lemay, A., Jacques, H., Asselin, G., et al. (2008). Flaxseed on cardiovascular disease markers in healthy menopausal women: A randomized, double-blind, placebo-controlled trial. Nutrition, 24(1), 23–30.

    Article  CAS  PubMed  Google Scholar 

  64. Rodriguez-Leyva, D., Dupasquier, C. M., McCullough, R., & Pierce, G. N. (2010). The cardiovascular effects of flaxseed and its omega-3 fatty acid, alpha-linolenic acid. The Canadian Journal of Cardiology, 26(9), 489–496.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kones, R., Howell, S., & Rumana, U. (2018). N-3 polyunsaturated fatty acids and cardiovascular disease: Principles, practices, pitfalls, and promises - a contemporary review. Medical Principles and Practice, 26(6), 497–508.

    Article  Google Scholar 

  66. Balk, E. M., & Lichtenstein, A. H. (2017). Omega-3 fatty acids and cardiovascular disease: Summary of the 2016 Agency of Healthcare Research and Quality Evidence Review. Nutrients, 9(8), 865.

    Article  CAS  PubMed Central  Google Scholar 

  67. Bowen, K. J., Harris, W. S., & Kris-Etherton, P. M. (2016). Omega-3 fatty acids and cardiovascular disease: Are there benefits? Current Treatment Options in Cardiovascular Medicine, 18(11), 69–69.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Jain, A. P., Aggarwal, K. K., & Zhang, P. Y. (2015). Omega-3 fatty acids and cardiovascular disease. European Review for Medical and Pharmacological Sciences, 19(3), 441–445.

    CAS  PubMed  Google Scholar 

  69. Mohebi-Nejad, A., & Bikdeli, B. (2014). Omega-3 supplements and cardiovascular diseases. Tanaffos, 13(1), 6–14.

    PubMed  PubMed Central  Google Scholar 

  70. Harris, W. S. (2007). Omega-3 fatty acids and cardiovascular disease: A case for omega-3 index as a new risk factor. Pharmacological Research, 55(3), 217–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. von Schacky, C., & Harris, W. S. (2007). Cardiovascular benefits of omega-3 fatty acids. Cardiovascular Research, 73(2), 310–315.

    Article  CAS  Google Scholar 

  72. Bloedon, L. T., & Szapary, P. O. (2004). Flaxseed and cardiovascular risk. Nutrition Reviews, 62(1), 18–27.

    Article  PubMed  Google Scholar 

  73. Mori, T. A. (2014). Omega-3 fatty acids and cardiovascular disease: Epidemiology and effects on cardiometabolic risk factors. Food & Function, 5(9), 2004–2019.

    Article  CAS  Google Scholar 

  74. Mozaffarian, D. (2005). Does alpha-linolenic acid intake reduce the risk of coronary heart disease? A review of the evidence. Alternative Therapies in Health and Medicine, 11(3), 24–30; quiz 31, 79.

    PubMed  Google Scholar 

  75. Donaldson, M. S. (2004). Nutrition and cancer: A review of the evidence for an anti-cancer diet. Nutrition Journal, 3, 19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Adlercreutz, H. (2007). Lignans and human health. Critical Reviews in Clinical Laboratory Sciences, 44(5–6), 483–525.

    Article  CAS  PubMed  Google Scholar 

  77. Duda-Chodak, A. (2012). The inhibitory effect of polyphenols on human gut microbiota. Journal of Physiology and Pharmacology, 63(5), 497–503.

    CAS  PubMed  Google Scholar 

  78. Ezzat, S. M., Shouman, S. A., Elkhoely, A., Attia, Y., Elsesy, M., El Senoussy, A., et al. (2018). Anticancer potentiality of lignan rich fraction of six flaxseed cultivars. Scientific Reports, 8(1), 544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Calado, A., Neves, P. M., Santos, T., & Ravasco, P. (2018). The effect of flaxseed in breast cancer: A literature review. Frontiers in Nutrition, 5, 4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Delman, D. M., Fabian, C. J., Kimler, B. F., Yeh, H., & Petroff, B. K. (2015). Effects of flaxseed lignan secoisolariciresinol diglucosideon preneoplastic biomarkers of Cancer progression in a model of simultaneous breast and ovarian cancer development. Nutrition and Cancer, 67(5), 857–864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mason, J. K., & Thompson, L. U. (2014). Flaxseed and its lignan and oil components: Can they play a role in reducing the risk of and improving the treatment of breast cancer? Applied Physiology, Nutrition, and Metabolism, 39(6), 663–678.

    Article  CAS  PubMed  Google Scholar 

  82. Lowcock, E. C., Cotterchio, M., & Boucher, B. A. (2013). Consumption of flaxseed, a rich source of lignans, is associated with reduced breast cancer risk. Cancer Causes & Control, 24(4), 813–816.

    Article  Google Scholar 

  83. Wang, L., Chen, J., & Thompson, L. U. (2005). The inhibitory effect of flaxseed on the growth and metastasis of estrogen receptor negative human breast cancer xenograftsis attributed to both its lignan and oil components. International Journal of Cancer, 116(5), 793–798.

    Article  CAS  PubMed  Google Scholar 

  84. Thompson, L. U., Chen, J. M., Li, T., Strasser-Weippl, K., & Goss, P. E. (2005). Dietary flaxseed alters tumor biological markers in postmenopausal breast cancer. Clinical Cancer Research, 11(10), 3828–3835.

    Article  CAS  PubMed  Google Scholar 

  85. Chen, J., Stavro, P. M., & Thompson, L. U. (2002). Dietary flaxseed inhibits human breast cancer growth and metastasis and downregulates expression of insulin-like growth factor and epidermal growth factor receptor. Nutrition and Cancer, 43(2), 187–192.

    Article  CAS  PubMed  Google Scholar 

  86. Di, Y., De Silva, F., Krol, E. S., & Alcorn, J. (2018). Flaxseed lignans enhance the cytotoxicity of chemotherapeutic agents against breast cancer cell lines MDA-MB-231 and SKBR3. Nutrition and Cancer, 70(2), 306–315.

    Article  CAS  PubMed  Google Scholar 

  87. Azrad, M., Vollmer, R. T., Madden, J., Dewhirst, M., Polascik, T. J., Snyder, D. C., et al. (2013). Flaxseed-derived enterolactone is inversely associated with tumor cell proliferation in men with localized prostate cancer. Journal of Medicinal Food, 16(4), 357–360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Demark-Wahnefried, W., Robertson, C. N., Walther, P. J., Polascik, T. J., Paulson, D. F., & Vollmer, R. T. (2004). Pilot study to explore effects of low-fat, flaxseed-supplemented diet on proliferation of benign prostatic epithelium and prostate-specific antigen. Urology, 63(5), 900–904.

    Article  PubMed  Google Scholar 

  89. DeLuca, J. A. A., Garcia-Villatoro, E. L., & Allred, C. D. (2018). Flaxseed bioactive compounds and colorectal cancer prevention. Current Oncology Reports, 20(8), 59.

    Article  CAS  PubMed  Google Scholar 

  90. Jenab, M., & Thompson, L. U. (1996). The influence of flaxseed and lignans on colon carcinogenesis and beta-glucuronidase activity. Carcinogenesis, 17(6), 1343–1348.

    Article  CAS  PubMed  Google Scholar 

  91. Velalopoulou, A., Tyagi, S., Pietrofesa, R. A., Arguiri, E., & Christofidou-Solomidou, M. (2015). The flaxseed-derived lignan phenolic secoisolariciresinol diglucoside (SDG) protects non-malignant lung cells from radiation damage. International Journal of Molecular Sciences, 17(1), 7.

    Article  CAS  PubMed Central  Google Scholar 

  92. Rose, D. P., & Connolly, J. M. (1999). Omega-3 fatty acids as cancer chemopreventive agents. Pharmacology & Therapeutics, 83(3), 217–244.

    Article  CAS  Google Scholar 

  93. Stephenson, J. A., Al-Taan, O., Arshad, A., Morgan, B., Metcalfe, M. S., & Dennison, A. R. (2013). The multifaceted effects of omega-3 polyunsaturated fatty acids on the hallmarks of cancer. Journal of Lipids, 2013, 261247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhang, Y.-F., Gao, H. F., Hou, A. J., & Zhou, Y. H. (2014). Effect of omega-3 fatty acid supplementation on cancer incidence, non-vascular death, and total mortality: A meta-analysis of randomized controlled trials. BMC Public Health, 14, 204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Laviano, A., Rianda, S., Molfino, A., & Rossi Fanelli, F. (2013). Omega-3 fatty acids in cancer. Current Opinion in Clinical Nutrition and Metabolic Care, 16(2), 156–161.

    Article  CAS  PubMed  Google Scholar 

  96. Jing, K., Wu, T., & Lim, K. (2013). Omega-3 polyunsaturated fatty acids and cancer. Anti-Cancer Agents in Medicinal Chemistry, 13(8), 1162–1177.

    Article  CAS  PubMed  Google Scholar 

  97. Fabian, C. J., Kimler, B. F., & Hursting, S. D. (2015). Omega-3 fatty acids for breast cancer prevention and survivorship. Breast Cancer Research, 17(1), 62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Fu, Y.-Q., Zheng, J. S., Yang, B., & Li, D. (2015). Effect of individual omega-3 fatty acids on the risk of prostate cancer: A systematic review and dose-response meta-analysis of prospective cohort studies. Journal of Epidemiology, 25(4), 261–274.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Volpato, M., & Hull, M. A. (2018). Omega-3 polyunsaturated fatty acids as adjuvant therapy of colorectal cancer. Cancer Metastasis Reviews, 37(2–3), 545–555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Park, J.-M., Kwon, S. H., Han, Y. M., Hahm, K. B., & Kim, E. H. (2013). Omega-3 polyunsaturated fatty acids as potential chemopreventive agent for gastrointestinal cancer. Journal of Cancer Prevention, 18(3), 201–208.

    Article  PubMed  PubMed Central  Google Scholar 

  101. D’Eliseo, D., & Velotti, F. (2016). Omega-3 fatty acids and cancer cell cytotoxicity: implications for multi-targeted Cancer therapy. Journal of Clinical Medicine, 5(2), 15.

    Article  CAS  PubMed Central  Google Scholar 

  102. Ren, G.-Y., Chen, C. Y., Chen, G. C., Chen, W. G., Pan, A., Pan, C. W., et al. (2016). Effect of flaxseed intervention on inflammatory marker C-reactive protein: A systematic review and meta-analysis of randomized controlled trials. Nutrients, 8(3), 136–136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zivkovic, A. M., Telis, N., German, J. B., & Hammock, B. D. (2011). Dietary omega-3 fatty acids aid in the modulation of inflammation and metabolic health. California Agriculture, 65(3), 106–111.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Singh, S., Nair, V., & Gupta, Y. K. (2012). Linseed oil: An investigation of its antiarthritic activity in experimental models. Phytotherapy Research, 26(2), 246–252.

    Article  CAS  PubMed  Google Scholar 

  105. Calder, P. C. (2013). Omega-3 polyunsaturated fatty acids and inflammatory processes: Nutrition or pharmacology? British Journal of Clinical Pharmacology, 75(3), 645–662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Turowski, J. B., Pietrofesa, R. A., Lawson, J. A., Christofidou-Solomidou, M., & Hadjiliadis, D. (2015). Flaxseed modulates inflammatory and oxidative stress biomarkers in cystic fibrosis: A pilot study. BMC Complementary and Alternative Medicine, 15, 148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kaithwas, G., Mukherjee, A., Chaurasia, A. K., & Majumdar, D. K. (2011). Anti-inflammatory, analgesic and antipyretic activities of Linum usitatissimum L. (flaxseed/linseed) fixed oil. Indian Journal of Experimental Biology, 49(12), 932–938.

    CAS  PubMed  Google Scholar 

  108. Nordstrom, D. C., Friman, C., Konttinen, Y. T., Honkanen, V. E., Nasu, Y., & Antila, E. (1995). Alpha-linolenic acid in the treatment of rheumatoid arthritis. A double-blind, placebo-controlled and randomized study: Flaxseed vs. safflower seed. Rheumatology International, 14(6), 231–234.

    Article  CAS  PubMed  Google Scholar 

  109. Soeken, K. L., Miller, S. A., & Ernst, E. (2003). Herbal medicines for the treatment of rheumatoid arthritis: A systematic review. Rheumatology (Oxford), 42(5), 652–659.

    Article  CAS  Google Scholar 

  110. Thomas, S., Browne, H., Mobasheri, A., & Rayman, M. P. (2018). What is the evidence for a role for diet and nutrition in osteoarthritis? Rheumatology (Oxford, England), 57(suppl_4), iv61–iv74.

    Article  CAS  Google Scholar 

  111. Ameye, L. G., & Chee, W. S. S. (2006). Osteoarthritis and nutrition. From nutraceuticals to functional foods: A systematic review of the scientific evidence. Arthritis Research & Therapy, 8(4), R127.

    Article  CAS  Google Scholar 

  112. Mosavat, S. H., Masoudi, N., Hajimehdipoor, H., Emami Meybodi, M. K., Niktabe, Z., Tabarrai, M., et al. (2018). Efficacy of topical Linum usitatissimum L. (flaxseed) oil in knee osteoarthritis: A double-blind, randomized, placebo-controlled clinical trial. Complementary Therapies in Clinical Practice, 31, 302–307.

    Article  PubMed  Google Scholar 

  113. Godos, J., Bergante, S., Satriano, A., Pluchinotta, F. R., & Marranzano, M. (2018). Dietary phytoestrogen intake is inversely associated with hypertension in a cohort of adults living in the Mediterranean area. Molecules, 23(2), E368.

    Article  CAS  PubMed  Google Scholar 

  114. Khalesi, S., Irwin, C., & Schubert, M. (2015). Flaxseed consumption may reduce blood pressure: A systematic review and meta-analysis of controlled trials. The Journal of Nutrition, 145(4), 758–765.

    Article  CAS  PubMed  Google Scholar 

  115. Rodriguez-Leyva, D., Weighell, W., Edel, A. L., Lavallee, R., Dibrov, E., Pinneker, R., et al. (2013). Potent antihypertensive action of dietary flaxseed in hypertensive patients. Hypertension, 62(6), 1081–1089.

    Article  CAS  PubMed  Google Scholar 

  116. Torkan, M., Entezari, M. H., & Siavash, M. (2015). Effect of flaxseed on blood lipid level in hyperlipidemic patients. Reviews on Recent Clinical Trials, 10(1), 61–67.

    Article  CAS  PubMed  Google Scholar 

  117. Saxena, S., & Katare, C. (2014). Evaluation of flaxseed formulation as a potential therapeutic agent in mitigation of dyslipidemia. Biomedical Journal, 37(6), 386–390.

    Article  PubMed  Google Scholar 

  118. Leyva, D. R., Zahradka, P., Ramjiawan, B., Guzman, R., Aliani, M., & Pierce, G. N. (2011). The effect of dietary flaxseed on improving symptoms of cardiovascular disease in patients with peripheral artery disease: Rationale and design of the FLAX-PAD randomized controlled trial. Contemporary Clinical Trials, 32(5), 724–730.

    Article  CAS  PubMed  Google Scholar 

  119. Patade, A., Devareddy, L., Lucas, E. A., Korlagunta, K., Daggy, B. P., & Arjmandi, B. H. (2008). Flaxseed reduces total and LDL cholesterol concentrations in Native American postmenopausal women. Journal of Women’s Health (2002), 17(3), 355–366.

    Article  Google Scholar 

  120. Kristensen, M., Jensen, M. G., Aarestrup, J., Petersen, K. E., Søndergaard, L., Mikkelsen, M. S., et al. (2012). Flaxseed dietary fibers lower cholesterol and increase fecal fat excretion, but magnitude of effect depend on food type. Nutrition & Metabolism (London), 9, 8.

    Article  CAS  Google Scholar 

  121. Prasad, K., & Dhar, A. (2016). Flaxseed and diabetes. Current Pharmaceutical Design, 22(2), 141–144.

    Article  CAS  PubMed  Google Scholar 

  122. Nazni, P., Amirthaveni, M., & Poongodi Vijayakumar, T. (2006). Impact of flaxseed based therapeutic food on selected type II diabetic patients. The Indian Journal of Nutrition and Dietetics, 43(4), 141–145.

    Google Scholar 

  123. Pan, A., Sun, J., Chen, Y., Ye, X., Li, H., Yu, Z., et al. (2007). Effects of a flaxseed-derived lignan supplement in type 2 diabetic patients: A randomized, double-blind, cross-over trial. PLoS One, 2(11), e1148.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Wu, J. H. Y., Micha, R., Imamura, F., Pan, A., Biggs, M. L., Ajaz, O., et al. (2012). Omega-3 fatty acids and incident type 2 diabetes: A systematic review and meta-analysis. The British Journal of Nutrition, 107(Suppl 2), S214–S227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kapoor, S., Sachdeva, R., & Kochhar, A. (2011). Efficacy of flaxseed supplementation on nutrient intake and other lifestyle pattern in menopausal diabetic females. Studies on Ethno-Medicine, 5, 153–160.

    Article  Google Scholar 

  126. Thakur, G., Mitra, A., Pal, K., & Rousseau, D. (2009). Effect of flaxseed gum on reduction of blood glucose and cholesterol in type 2 diabetic patients. International Journal of Food Sciences and Nutrition, 60(Suppl 6), 126–136.

    Article  CAS  PubMed  Google Scholar 

  127. Barre, D. E., Mizier-Barre, K. A., Griscti, O., & Hafez, K. (2008). High dose flaxseed oil supplementation may affect fasting blood serum glucose management in human type 2 diabetics. Journal of Oleo Science, 57(5), 269–273.

    Article  CAS  PubMed  Google Scholar 

  128. Mohammadi-Sartang, M., Sohrabi, Z., Barati-Boldaji, R., Raeisi-Dehkordi, H., & Mazloom, Z. (2018). Flaxseed supplementation on glucose control and insulin sensitivity: A systematic review and meta-analysis of 25 randomized, placebo-controlled trials. Nutrition Reviews, 76(2), 125–139.

    Article  PubMed  Google Scholar 

  129. Chen, C., Yu, X., & Shao, S. (2015). Effects of omega-3 fatty acid supplementation on glucose control and lipid levels in type 2 diabetes: A meta-analysis. PLoS One, 10(10), e0139565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Rhee, Y., & Brunt, A. (2011). Flaxseed supplementation improved insulin resistance in obese glucose intolerant people: A randomized crossover design. Nutrition Journal, 10, 44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Javidi, A., Mozaffari-Khosravi, H., Nadjarzadeh, A., Dehghani, A., & Eftekhari, M. H. (2016). The effect of flaxseed powder on insulin resistance indices and blood pressure in prediabetic individuals: A randomized controlled clinical trial. Journal of Research in Medical Sciences, 21, 70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Azadbakht, L., Rouhani, M. H., & Surkan, P. J. (2011). Omega-3 fatty acids, insulin resistance and type 2 diabetes. Journal of Research in Medical Sciences, 16(10), 1259–1260.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Lepretti, M., Martucciello, S., Burgos Aceves, M. A., Putti, R., & Lionetti, L. (2018). Omega-3 fatty acids and insulin resistance: Focus on the regulation of mitochondria and endoplasmic reticulum stress. Nutrients, 10(3), 350.

    Article  CAS  PubMed Central  Google Scholar 

  134. Mani, U. V., Mani, I., Biswas, M., & Kumar, S. N. (2011). An open-label study on the effect of flax seed powder (Linum usitatissimum) supplementation in the management of diabetes mellitus. Journal of Dietary Supplements, 8(3), 257–265.

    Article  CAS  PubMed  Google Scholar 

  135. Wu, H., Pan, A., Yu, Z., Qi, Q., Lu, L., Zhang, G., et al. (2010). Lifestyle counseling and supplementation with flaxseed or walnuts influence the management of metabolic syndrome. The Journal of Nutrition, 140(11), 1937–1942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Dahl, W. J., Lockert, E. A., Cammer, A. L., & Whiting, S. J. (2005). Effects of flax fiber on laxation and glycemic response in healthy volunteers. Journal of Medicinal Food, 8(4), 508–511.

    Article  CAS  PubMed  Google Scholar 

  137. Soltanian, N., & Janghorbani, M. (2018). A randomized trial of the effects of flaxseed to manage constipation, weight, glycemia, and lipids in constipated patients with type 2 diabetes. Nutrition & Metabolism, 15, 36.

    Article  CAS  Google Scholar 

  138. Kristensen, M., Savorani, F., Christensen, S., Engelsen, S. B., Bügel, S., Toubro, S., et al. (2013). Flaxseed dietary fibers suppress postprandial lipemia and appetite sensation in young men. Nutrition, Metabolism, and Cardiovascular Diseases, 23(2), 136–143.

    Article  CAS  PubMed  Google Scholar 

  139. Ibrugger, S., Kristensen, M., Mikkelsen, M. S., & Astrup, A. (2012). Flaxseed dietary fiber supplements for suppression of appetite and food intake. Appetite, 58(2), 490–495.

    Article  CAS  PubMed  Google Scholar 

  140. Wanders, A. J., van den Borne, J. J., de Graaf, C., Hulshof, T., Jonathan, M. C., Kristensen, M., et al. (2011). Effects of dietary fibre on subjective appetite, energy intake and body weight: A systematic review of randomized controlled trials. Obesity Reviews, 12(9), 724–739.

    CAS  PubMed  Google Scholar 

  141. Mohammadi-Sartang, M., Mazloom, Z., Raeisi-Dehkordi, H., Barati-Boldaji, R., Bellissimo, N., & Totosy de Zepetnek, J. O. (2017). The effect of flaxseed supplementation on body weight and body composition: A systematic review and meta-analysis of 45 randomized placebo-controlled trials. Obesity Reviews, 18(9), 1096–1107.

    Article  CAS  PubMed  Google Scholar 

  142. Shim, Y. Y., Olivia, C. M., Liu, J., Boonen, R., Shen, J., & Reaney, M. J. (2016). Secoisolariciresinol diglucoside and cyanogenic glycosides in gluten-free bread fortified with flaxseed meal. Journal of Agricultural and Food Chemistry, 64(50), 9551–9558.

    Article  CAS  PubMed  Google Scholar 

  143. Margier, M., Georgé, S., Hafnaoui, N., Remond, D., Nowicki, M., Du Chaffaut, L., et al. (2018). Nutritional composition and bioactive content of legumes: Characterization of pulses frequently consumed in France and effect of the cooking method. Nutrients, 10(11), 1668.

    Article  CAS  PubMed Central  Google Scholar 

  144. Marinangeli, C. P. F., Curran, J., Barr, S. I., Slavin, J., Puri, S., Swaminathan, S., et al. (2017). Enhancing nutrition with pulses: Defining a recommended serving size for adults. Nutrition Reviews, 75(12), 990–1006.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Trinidad, T. P., Mallillin, A. C., Loyola, A. S., Sagum, R. S., & Encabo, R. R. (2010). The potential health benefits of legumes as a good source of dietary fibre. The British Journal of Nutrition, 103(4), 569–574.

    Article  CAS  PubMed  Google Scholar 

  146. Ahmed, S., & Hasan, M. (2014). Legumes: An overview. Journal of Pharmacy and Pharmaceutical Sciences, 2, 34–38.

    Google Scholar 

  147. Hever, J. (2016). Plant-based diets: A physician’s guide. The Permanente Journal, 20(3), 93–101.

    Google Scholar 

  148. Polak, R., Phillips, E. M., & Campbell, A. (2015). Legumes: Health benefits and culinary approaches to increase intake. Clinical Diabetes, 33(4), 198–205.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Hever, J., & Cronise, R. J. (2017). Plant-based nutrition for healthcare professionals: Implementing diet as a primary modality in the prevention and treatment of chronic disease. Journal of Geriatric Cardiology, 14(5), 355–368.

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Mudryj, A. N., Yu, N., & Aukema, H. M. (2014). Nutritional and health benefits of pulses. Applied Physiology, Nutrition, and Metabolism, 39(11), 1197–1204.

    Article  CAS  PubMed  Google Scholar 

  151. Marventano, S., Izquierdo Pulido, M., Sánchez-González, C., Godos, J., Speciani, A., Galvano, F., et al. (2017). Legume consumption and CVD risk: A systematic review and meta-analysis. Public Health Nutrition, 20(2), 245–254.

    Article  PubMed  Google Scholar 

  152. Li, H., Li, J., Shen, Y., Wang, J., & Zhou, D. (2017). Legume consumption and all-cause and cardiovascular disease mortality. BioMed Research International, 2017, 8450618.

    PubMed  PubMed Central  Google Scholar 

  153. Bouchenak, M., & Lamri-Senhadji, M. (2013). Nutritional quality of legumes, and their role in cardiometabolic risk prevention: A review. Journal of Medicinal Food, 16(3), 185–198.

    Article  CAS  PubMed  Google Scholar 

  154. Sanchez-Chino, X., Jiménez-Martínez, C., Dávila-Ortiz, G., Álvarez-González, I., & Madrigal-Bujaidar, E. (2015). Nutrient and nonnutrient components of legumes, and its chemopreventive activity: A review. Nutrition and Cancer, 67(3), 401–410.

    Article  CAS  PubMed  Google Scholar 

  155. Jochems, S. H. J., Van Osch, F. H. M., Bryan, R. T., Wesselius, A., van Schooten, F. J., Cheng, K. K., et al. (2018). Impact of dietary patterns and the main food groups on mortality and recurrence in cancer survivors: A systematic review of current epidemiological literature. BMJ Open, 8(2), e014530.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Li, J., & Mao, Q.-Q. (2017). Legume intake and risk of prostate cancer: A meta-analysis of prospective cohort studies. Oncotarget, 8(27), 44776–44784.

    PubMed  PubMed Central  Google Scholar 

  157. Zhu, B., Sun, Y., Qi, L., Zhong, R., & Miao, X. (2015). Dietary legume consumption reduces risk of colorectal cancer: Evidence from a meta-analysis of cohort studies. Scientific Reports, 5, 8797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Taha, Z., & Eltom, S. E. (2018). The role of diet and lifestyle in women with breast cancer: An update review of related research in the Middle East. BioResearch Open Access, 7(1), 73–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Campos-Vega, R., Oomah, B. D., Loarca-Piña, G., & Vergara-Castañeda, H. A. (2013). Common beans and their non-digestible fraction: Cancer inhibitory activity-an overview. Foods (Basel, Switzerland), 2(3), 374–392.

    Google Scholar 

  160. Becerra-Tomas, N., Díaz-López, A., Rosique-Esteban, N., Ros, E., Buil-Cosiales, P., Corella, D., et al. (2018). Legume consumption is inversely associated with type 2 diabetes incidence in adults: A prospective assessment from the PREDIMED study. Clinical Nutrition, 37(3), 906–913.

    Article  PubMed  Google Scholar 

  161. Singhal, P., Kaushik, G., & Mathur, P. (2014). Antidiabetic potential of commonly consumed legumes: A review. Critical Reviews in Food Science and Nutrition, 54(5), 655–672.

    Article  CAS  PubMed  Google Scholar 

  162. Alizadeh, M., Gharaaghaji, R., & Gargari, B. P. (2014). The effects of legumes on metabolic features, insulin resistance and hepatic function tests in women with central obesity: A randomized controlled trial. International Journal of Preventive Medicine, 5(6), 710–720.

    PubMed  PubMed Central  Google Scholar 

  163. Hosseinpour-Niazi, S., Mirmiran, P., Amiri, Z., Hosseini-Esfahani, F., Shakeri, N., & Azizi, F. (2012). Legume intake is inversely associated with metabolic syndrome in adults. Archives of Iranian Medicine, 15(9), 538–544.

    CAS  PubMed  Google Scholar 

  164. Martinez, R., López-Jurado, M., Wanden-Berghe, C., Sanz-Valero, J., Porres, J. M., & Kapravelou, G. (2016). Beneficial effects of legumes on parameters of the metabolic syndrome: A systematic review of trials in animal models. The British Journal of Nutrition, 116(3), 402–424.

    Article  CAS  PubMed  Google Scholar 

  165. Kim, S. J., de Souza, R. J., Choo, V. L., Ha, V., Cozma, A. I., Chiavaroli, L., et al. (2016). Effects of dietary pulse consumption on body weight: A systematic review and meta-analysis of randomized controlled trials. The American Journal of Clinical Nutrition, 103(5), 1213–1223.

    Article  CAS  PubMed  Google Scholar 

  166. McCrory, M. A., Hamaker, B. R., Lovejoy, J. C., & Eichelsdoerfer, P. E. (2010). Pulse consumption, satiety, and weight management. Advances in Nutrition (Bethesda, Md.), 1(1), 17–30.

    Article  Google Scholar 

  167. Faris, M. A. I. E., Takruri, H. R., & Issa, A. Y. (2013). Role of lentils (Lens culinaris L.) in human health and nutrition: A review. Mediterranean Journal of Nutrition and Metabolism, 6(1), 3–16.

    Article  Google Scholar 

  168. Ganesan, K., & Xu, B. (2017). Polyphenol-rich lentils and their health promoting effects. International Journal of Molecular Sciences, 18(11), 2390.

    Article  CAS  PubMed Central  Google Scholar 

  169. Chairatana, P., & Nolan, E. M. (2017). Defensins, lectins, mucins, and secretory immunoglobulin A: Microbe-binding biomolecules that contribute to mucosal immunity in the human gut. Critical Reviews in Biochemistry and Molecular Biology, 52(1), 45–56.

    Article  CAS  PubMed  Google Scholar 

  170. Shipunova, V. O., NikitinI, M. P., Zelepukin, I. V., Nikitin, P. I., Deyev, S. M., & Petrov, R. V. (2015). A comprehensive study of interactions between lectins and glycoproteins for the development of effective theranostic nanoagents. Doklady. Biochemistry and Biophysics, 464, 315–318.

    Article  CAS  PubMed  Google Scholar 

  171. Stephen, A. M., Dahl, W. J., Sieber, G. M., van Blaricom, J. A., & Morgan, D. R. (1995). Effect of green lentils on colonic function, nitrogen balance, and serum lipids in healthy human subjects. The American Journal of Clinical Nutrition, 62(6), 1261–1267.

    Article  CAS  PubMed  Google Scholar 

  172. Mollard, R. C., Zykus, A., Luhovyy, B. L., Nunez, M. F., Wong, C. L., & Anderson, G. H. (2012). The acute effects of a pulse-containing meal on glycaemic responses and measures of satiety and satiation within and at a later meal. The British Journal of Nutrition, 108(3), 509–517.

    Article  CAS  PubMed  Google Scholar 

  173. Aslani, Z., Mirmiran, P., Alipur, B., Bahadoran, Z., & Abbassalizade Farhangi, M. (2015). Lentil sprouts effect on serum lipids of overweight and obese patients with type 2 diabetes. Health Promotion Perspective, 5(3), 215–224.

    Article  Google Scholar 

  174. Bolsinger, J., Landstrom, M., Pronczuk, A., Auerbach, A., & Hayes, K. C. (2017). Low glycemic load diets protect against metabolic syndrome and type 2 diabetes mellitus in the male Nile rat. The Journal of Nutritional Biochemistry, 42, 134–148.

    Article  CAS  PubMed  Google Scholar 

  175. Ramdath, D. D., Wolever, T. M. S., Siow, Y. C., Ryland, D., Hawke, A., Taylor, C., et al. (2018). Effect of processing on postprandial glycemic response and consumer acceptability of lentil-containing food items. Foods (Basel, Switzerland), 7(5), 76.

    Google Scholar 

  176. Higgins, J. A. (2012). Whole grains, legumes, and the subsequent meal effect: Implications for blood glucose control and the role of fermentation. Journal of Nutrition and Metabolism, 2012, 829238.

    Article  CAS  PubMed  Google Scholar 

  177. Ha, V., Sievenpiper, J. L., de Souza, R. J., Jayalath, V. H., Mirrahimi, A., Agarwal, A., et al. (2014). Effect of dietary pulse intake on established therapeutic lipid targets for cardiovascular risk reduction: A systematic review and meta-analysis of randomized controlled trials. CMAJ, 186(8), E252–E262.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Hanson, M. G., Zahradka, P., & Taylor, C. G. (2014). Lentil-based diets attenuate hypertension and large-artery remodelling in spontaneously hypertensive rats. The British Journal of Nutrition, 111(4), 690–698.

    Article  CAS  PubMed  Google Scholar 

  179. Jayalath, V. H., de Souza, R. J., Sievenpiper, J. L., Ha, V., Chiavaroli, L., Mirrahimi, A., et al. (2014). Effect of dietary pulses on blood pressure: A systematic review and meta-analysis of controlled feeding trials. American Journal of Hypertension, 27(1), 56–64.

    Article  PubMed  Google Scholar 

  180. Hanson, M., Zahradka, P., Taylor, C. G., & Aliani, M. (2018). Identification of urinary metabolites with potential blood pressure-lowering effects in lentil-fed spontaneously hypertensive rats. European Journal of Nutrition, 57(1), 297–308.

    Article  CAS  PubMed  Google Scholar 

  181. Baszczuk, A., Kopczyński, Z., Kopczyński, J., Cymerys, M., Thielemann, A., Bielawska, L., et al. (2015). Impact of administration of folic acid on selected indicators of inflammation in patients with primary arterial hypertension. Postȩpy Higieny i Medycyny Doświadczalnej (Online), 69, 429–435.

    Article  Google Scholar 

  182. Kolte, D., Vijayaraghavan, K., Khera, S., Sica, D. A., & Frishman, W. H. (2014). Role of magnesium in cardiovascular diseases. Cardiology in Review, 22(4), 182–192.

    Article  PubMed  Google Scholar 

  183. Jarpa-Parra, M. (2018). Lentil protein: A review of functional properties and food application. An Overview of Lentil Protein Functionality, 53(4), 892–903.

    CAS  Google Scholar 

  184. Yau, T., Dan, X., Ng, C. C., & Ng, T. B. (2015). Lectins with potential for anti-cancer therapy. Molecules (Basel, Switzerland), 20(3), 3791–3810.

    Article  CAS  Google Scholar 

  185. De Mejia, E. G., & Prisecaru, V. I. (2005). Lectins as bioactive plant proteins: A potential in cancer treatment. Critical Reviews in Food Science and Nutrition, 45(6), 425–445.

    Article  CAS  PubMed  Google Scholar 

  186. Dan, X. L., & Ng, T. B. (2013). Lectins in human cancer: Both a devil and an angel? Current Protein & Peptide Science, 14(6), 481–491.

    Article  CAS  Google Scholar 

  187. Jiang, Q. L., Zhang, S., Tian, M., Zhang, S. Y., Xie, T., Chen, D. Y., et al. (2015). Plant lectins, from ancient sugar-binding proteins to emerging anti-cancer drugs in apoptosis and autophagy. Cell Proliferation, 48(1), 17–28.

    Article  CAS  PubMed  Google Scholar 

  188. Faris, M. A., Takruri, H. R., Shomaf, M. S., & Bustanji, Y. K. (2009). Chemopreventive effect of raw and cooked lentils (Lens culinaris L) and soybeans (Glycine max) against azoxymethane-induced aberrant crypt foci. Nutrition Research, 29(5), 355–362.

    Article  CAS  PubMed  Google Scholar 

  189. Srivastava, R., & Vasishtha, H. (2013). Dietary fiber, protein and lectin contents of lentils (Lens culinaris) on soaking and cooking. Current Advances in Agricultural Sciences, 5, 238–241.

    Google Scholar 

  190. Aune, D., De Stefani, E., Ronco, A., Boffetta, P., Deneo-Pellegrini, H., Acosta, G., et al. (2009). Legume intake and the risk of cancer: A multisite case-control study in Uruguay. Cancer Causes & Control, 20(9), 1605–1615.

    Article  Google Scholar 

  191. Braakhuis, A. J., Campion, P., & Bishop, K. S. (2016). Reducing breast cancer recurrence: The role of dietary polyphenolics. Nutrients, 8(9), 547.

    Article  CAS  PubMed Central  Google Scholar 

  192. Björnstedt, M., & Fernandes, A. P. (2010). Selenium in the prevention of human cancers. The EPMA Journal, 1(3), 389–395.

    Article  PubMed  PubMed Central  Google Scholar 

  193. Babaknejad, N., Sayehmiri, F., Sayehmiri, K., Rahimifar, P., Bahrami, S., Delpesheh, A., et al. (2014). The relationship between selenium levels and breast cancer: A systematic review and meta-analysis. Biological Trace Element Research, 159(1–3), 1–7.

    Article  CAS  PubMed  Google Scholar 

  194. Huang, G., Liu, Z., He, L., Luk, K. H., Cheung, S. T., Wong, K. H., et al. (2018). Autophagy is an important action mode for functionalized selenium nanoparticles to exhibit anti-colorectal cancer activity. Biomaterials Science, 6(9), 2508–2517.

    Article  CAS  PubMed  Google Scholar 

  195. Elango, S., Samuel, S., Khashim, Z., & Subbiah, U. (2018). Selenium influences trace elements homeostasis, cancer biomarkers in squamous cell carcinoma patients administered with cancerocidal radiotherapy. Asian Pacific Journal of Cancer Prevention, 19(7), 1785–1792.

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Gao, P. T., Ding, G. Y., Yang, X., Dong, R. Z., Hu, B., Zhu, X. D., et al. (2018). Invasive potential of hepatocellular carcinoma is enhanced by loss of selenium-binding protein 1 and subsequent upregulation of CXCR4. American Journal of Cancer Research, 8(6), 1040.

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Duntas, L. H. (2009). Selenium and inflammation: Underlying anti-inflammatory mechanisms. Hormone and Metabolic Research, 41(6), 443–447.

    Article  CAS  PubMed  Google Scholar 

  198. Gómez-Pinilla, F. (2008). Brain foods: The effects of nutrients on brain function. Nature Reviews. Neuroscience, 9(7), 568–578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Houshmand, G., Tarahomi, S., Arzi, A., Goudarzi, M., Bahadoram, M., & Rashidi-Nooshabadi, M. (2016). Red lentil extract: Neuroprotective effects on perphenazine induced catatonia in rats. Journal of Clinical and Diagnostic Research: JCDR, 10(6), FF05–FF08.

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Bourre, J. M. (2006). Effects of nutrients (in food) on the structure and function of the nervous system: Update on dietary requirements for brain. Part 2 : Macronutrients. The Journal of Nutrition, Health & Aging, 10(5), 386–399.

    CAS  Google Scholar 

  201. Siew, J. J., & Chern, Y. (2018). Microglial lectins in health and neurological diseases. Frontiers in Molecular Neuroscience, 11, 158–158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Massey, L. K., Palmer, R. G., & Horner, H. T. (2001). Oxalate content of soybean seeds (Glycine max: Leguminosae), soyfoods, and other edible legumes. Journal of Agricultural and Food Chemistry, 49(9), 4262–4266.

    Article  CAS  PubMed  Google Scholar 

  203. MacFarquhar, J. K., Broussard, D. L., Melstrom, P., Hutchinson, R., Wolkin, A., Martin, C., et al. (2010). Acute selenium toxicity associated with a dietary supplement. Archives of Internal Medicine, 170(3), 256–261.

    Article  PubMed  PubMed Central  Google Scholar 

  204. Mejri, F., Selmi, S., Martins, A., Benkhoud, H., Baati, T., Chaabane, H., et al. (2018). Broad bean (Vicia faba L.) pods: A rich source of bioactive ingredients with antimicrobial, antioxidant, enzyme inhibitory, anti-diabetic and health-promoting properties. Food & Function, 9(4), 2051–2069.

    Article  CAS  Google Scholar 

  205. Messina, V. (2014). Nutritional and health benefits of dried beans. The American Journal of Clinical Nutrition, 100(Suppl 1), 437s–442s.

    Article  CAS  PubMed  Google Scholar 

  206. Valente, I. M., Maia, M. R. G., Malushi, N., Oliveira, H. M., Papa, L., Rodrigues, J. A., et al. (2018). Profiling of phenolic compounds and antioxidant properties of European varieties and cultivars of Vicia faba L. pods. Phytochemistry, 152, 223–229.

    Article  CAS  PubMed  Google Scholar 

  207. Yao, Y., Cheng, X., Wang, L., Wang, S., & Ren, G. (2011). Biological potential of sixteen legumes in China. International Journal of Molecular Sciences, 12(10), 7048–7058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Oomah, B. D., Corbe, A., & Balasubramanian, P. (2010). Antioxidant and anti-inflammatory activities of bean (Phaseolus vulgaris L.) hulls. Journal of Agricultural and Food Chemistry, 58(14), 8225–8230.

    Article  CAS  PubMed  Google Scholar 

  209. Reverri, E. J., Randolph, J. M., Steinberg, F. M., Kappagoda, C. T., Edirisinghe, I., & Burton-Freeman, B. M. (2015). Black beans, fiber, and antioxidant capacity pilot study: Examination of whole foods vs. functional components on postprandial metabolic, oxidative stress, and inflammation in adults with metabolic syndrome. Nutrients, 7(8), 6139–6154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Ros, E., & Hu, F. B. (2013). Consumption of plant seeds and cardiovascular health: Epidemiological and clinical trial evidence. Circulation, 128(5), 553–565.

    Article  PubMed  PubMed Central  Google Scholar 

  211. Johnston, C. (2009). Functional foods as modifiers of cardiovascular disease. American Journal of Lifestyle Medicine, 3(1 Suppl), 39S–43S.

    Article  PubMed  Google Scholar 

  212. Ganesan, K., & Xu, B. (2017). Polyphenol-rich dry common beans (Phaseolus vulgaris L.) and their health benefits. International Journal of Molecular Sciences, 18(11), 2331.

    Article  CAS  PubMed Central  Google Scholar 

  213. Anderson, J. W., & Major, A. W. (2002). Pulses and lipaemia, short- and long-term effect: Potential in the prevention of cardiovascular disease. The British Journal of Nutrition, 88(Suppl 3), S263–S271.

    Article  CAS  PubMed  Google Scholar 

  214. Winham, D. M., & Hutchins, A. M. (2007). Baked bean consumption reduces serum cholesterol in hypercholesterolemic adults. Nutrition Research, 27(7), 380–386.

    Article  CAS  Google Scholar 

  215. Winham, D. M., Hutchins, A. M., & Thompson, S. V. (2017). Glycemic response to black beans and chickpeas as part of a rice meal: A randomized cross-over trial. Nutrients, 9(10), 1095.

    Article  CAS  PubMed Central  Google Scholar 

  216. Panlasigui, L. N., Panlilio, L. M., & Madrid, J. C. (1995). Glycaemic response in normal subjects to five different legumes commonly used in the Philippines. International Journal of Food Sciences and Nutrition, 46(2), 155–160.

    Article  CAS  PubMed  Google Scholar 

  217. Thompson, S. V., Winham, D. M., & Hutchins, A. M. (2012). Bean and rice meals reduce postprandial glycemic response in adults with type 2 diabetes: A cross-over study. Nutrition Journal, 11, 23.

    Article  PubMed  PubMed Central  Google Scholar 

  218. Morenga, L. T., Williams, S., Brown, R., & Mann, J. (2010). Effect of a relatively high-protein, high-fiber diet on body composition and metabolic risk factors in overweight women. European Journal of Clinical Nutrition, 64(11), 1323–1331.

    Article  CAS  PubMed  Google Scholar 

  219. Celleno, L., Tolaini, M. V., D’Amore, A., Perricone, N. V., & Preuss, H. G. (2007). A dietary supplement containing standardized Phaseolus vulgaris extract influences body composition of overweight men and women. International Journal of Medical Sciences, 4(1), 45–52.

    Article  PubMed  PubMed Central  Google Scholar 

  220. Vergara-Castaneda, H. A., Guevara-González, R. G., Ramos-Gómez, M., Reynoso-Camacho, R., Guzmán-Maldonado, H., Feregrino-Pérez, A. A., et al. (2010). Non-digestible fraction of cooked bean (Phaseolus vulgaris L.) cultivar Bayo Madero suppresses colonic aberrant crypt foci in azoxymethane-induced rats. Food & Function, 1(3), 294–300.

    Article  CAS  Google Scholar 

  221. Feregrino-Perez, A. A., Piñol-Felis, C., Gomez-Arbones, X., Guevara-González, R. G., Campos-Vega, R., Acosta-Gallegos, J. A., et al. (2014). A non-digestible fraction of the common bean (Phaseolus vulgaris L.) induces cell cycle arrest and apoptosis during early carcinogenesis. Plant Foods for Human Nutrition, 69(3), 248–254.

    Article  CAS  PubMed  Google Scholar 

  222. Thompson, M. D., Thompson, H. J., Brick, M. A., McGinley, J. N., Jiang, W., Zhu, Z., et al. (2008). Mechanisms associated with dose-dependent inhibition of rat mammary carcinogenesis by dry bean (Phaseolus vulgaris, L.). The Journal of Nutrition, 138(11), 2091–2097.

    Article  CAS  PubMed  Google Scholar 

  223. Aliko, V., Qirjo, M., Sula, E., Morina, V., & Faggio, C. (2018). Antioxidant defense system, immune response and erythron profile modulation in gold fish, Carassius auratus, after acute manganese treatment. Fish & Shellfish Immunology, 76, 101–109.

    Article  CAS  Google Scholar 

  224. Wendolowicz, A., Stefanska, E., & Ostrowska, L. (2018). Influence of selected dietary components on the functioning of the human nervous system. Roczniki Państwowego Zakładu Higieny, 69(1), 15–21.

    CAS  PubMed  Google Scholar 

  225. Hapeta, B., Koczy, B., Fitowska, A., Dobrakowski, M., Kasperczyk, A., Ostałowska, A., et al. (2012). Metabolism and protein transformations in synovial membrane of a knee joint in the course of rheumatoid arthritis and degenerative arthritis. Polish Orthopaedics and Traumatology, 77, 53–58.

    Google Scholar 

  226. Landete-Castillejos, T., Molina-Quilez, I., Estevez, J. A., Ceacero, F., Garcia, A. J., & Gallego, L. (2012). Alternative hypothesis for the origin of osteoporosis: The role of Mn. Frontiers in Bioscience (Elite Edition), 4, 1385–1390.

    Article  Google Scholar 

  227. Du, S., Wu, X., Han, T., Duan, W., Liu, L., Qi, J., et al. (2018). Dietary manganese and type 2 diabetes mellitus: Two prospective cohort studies in China. Diabetologia, 61(9), 1985–1995.

    Article  CAS  PubMed  Google Scholar 

  228. Leggio, G. M., Salomone, S., Bucolo, C., Platania, C., Micale, V., Caraci, F., et al. (2013). Dopamine D(3) receptor as a new pharmacological target for the treatment of depression. European Journal of Pharmacology, 719(1–3), 25–33.

    Article  CAS  PubMed  Google Scholar 

  229. Tavakkoli-Kakhki, M., Eslami, S., & Motavasselian, M. (2015). Nutrient-rich versus nutrient-poor foods for depressed patients based on Iranian traditional medicine resources. Avicenna Journal of Phytomedicine, 5(4), 298–308.

    CAS  PubMed  PubMed Central  Google Scholar 

  230. LeWitt, P. A. (2015). Levodopa therapy for Parkinson’s disease: Pharmacokinetics and pharmacodynamics. Movement Disorders, 30(1), 64–72.

    Article  CAS  PubMed  Google Scholar 

  231. Hornykiewicz, O. (2010). A brief history of levodopa. Journal of Neurology, 257(Suppl 2), S249–S252.

    Article  CAS  PubMed  Google Scholar 

  232. Ovallath, S., & Sulthana, B. (2017). Levodopa: History and therapeutic applications. Annals of Indian Academy of Neurology, 20(3), 185–189.

    PubMed  PubMed Central  Google Scholar 

  233. Apaydin, H., Ertan, S., & Ozekmekci, S. (2000). Broad bean (Vicia faba)--a natural source of L-dopa—Prolongs “on” periods in patients with Parkinson’s disease who have “on-off” fluctuations. Movement Disorders, 15(1), 164–166.

    Article  CAS  PubMed  Google Scholar 

  234. Essa, M. M., Braidy, N., Bridge, W., Subash, S., Manivasagam, T., Vijayan, R. K., et al. (2014). Review of natural products on Parkinson’s disease pathology. Journal of Aging Research & Clinical Practice, 3(3), 127–136.

    Google Scholar 

  235. Ramírez-Moreno, J., Salguero Bodes, I., Romaskevych, O., & Duran-Herrera, M. C. (2015). Broad bean (Vicia faba) consumption and Parkinson’s disease: A natural source of L-dopa to consider. Neurología, 30, 375–376.

    Article  PubMed  Google Scholar 

  236. Vural, N., & Sardas, S. (1984). Biological activities of broad bean (Vicia faba L.) extracts cultivated in South Anatolia in favism sensitive subjects. Toxicology, 31(2), 175–179.

    Article  CAS  PubMed  Google Scholar 

  237. Belfield, K. D., & Tichy, E. M. (2018). Review and drug therapy implications of glucose-6-phosphate dehydrogenase deficiency. American Journal of Health-System Pharmacy, 75(3), 97–104.

    Article  CAS  PubMed  Google Scholar 

  238. Kramell, R., Schmidt, J., Herrmann, G., & Schliemann, W. (2005). N-(jasmonoyl)tyrosine-derived compounds from flowers of broad beans (Vicia faba). Journal of Natural Products, 68(9), 1345–1349.

    Article  CAS  PubMed  Google Scholar 

  239. van der Steen, W., den Heijer, T., & Groen, J. (2018). Vitamin B6 deficiency caused by the use of levodopa. Nederlands Tijdschrift voor Geneeskunde, 162, D2818.

    PubMed  Google Scholar 

  240. Hinz, M., Stein, A., & Cole, T. (2014). The Parkinson’s disease death rate: Carbidopa and vitamin B6. Clinical Pharmacology: Advances and Applications, 6, 161–169.

    CAS  Google Scholar 

  241. Messina, M. (2016). Soy and health update: Evaluation of the clinical and epidemiologic literature. Nutrients, 8(12), 754.

    Article  PubMed Central  Google Scholar 

  242. D’Adamo, C. R., & Sahin, A. (2014). Soy foods and supplementation: A review of commonly perceived health benefits and risks. Alternative Therapies in Health and Medicine, 20(Suppl 1), 39–51.

    PubMed  Google Scholar 

  243. Balk, E., Chung, M., & Chew, P. (2005). Effects of soy on health outcomes: Summary. In AHRQ evidence report summaries 1998–2005. Rockville, MD: Agency for Healthcare Research and Quality (US). https://www.ncbi.nlm.nih.gov/books/NBK11870/

    Google Scholar 

  244. Rizzo, G., & Baroni, L. (2018). Soy, soy foods and their role in vegetarian diets. Nutrients, 10(1), 43.

    Article  CAS  PubMed Central  Google Scholar 

  245. Friedman, M., & Brandon, D. L. (2001). Nutritional and health benefits of soy proteins. Journal of Agricultural and Food Chemistry, 49(3), 1069–1086.

    Article  CAS  PubMed  Google Scholar 

  246. Xiao, C. W. (2008). Health effects of soy protein and isoflavones in humans. The Journal of Nutrition, 138(6), 1244s–1249s.

    Article  CAS  PubMed  Google Scholar 

  247. Messina, M., Rogero, M. M., Fisberg, M., & Waitzberg, D. (2017). Health impact of childhood and adolescent soy consumption. Nutrition Reviews, 75(7), 500–515.

    Article  PubMed  Google Scholar 

  248. Jargin, S. V. (2014). Soy and phytoestrogens: Possible side effects. German Medical Science, 12, Doc18.

    PubMed  PubMed Central  Google Scholar 

  249. Barrett, J. R. (2006). The science of soy: What do we really know? Environmental Health Perspectives, 114(6), A352–A358.

    PubMed  PubMed Central  Google Scholar 

  250. Yan, Z., Zhang, X., Li, C., Jiao, S., & Dong, W. (2017). Association between consumption of soy and risk of cardiovascular disease: A meta-analysis of observational studies. European Journal of Preventive Cardiology, 24(7), 735–747.

    Article  PubMed  Google Scholar 

  251. Hu, X., Gao, J., Zhang, Q., Fu, Y., Li, K., Zhu, S., et al. (2013). Soy fiber improves weight loss and lipid profile in overweight and obese adults: A randomized controlled trial. Molecular Nutrition & Food Research, 57(12), 2147–2154.

    Article  CAS  Google Scholar 

  252. Eilat-Adar, S., Sinai, T., Yosefy, C., & Henkin, Y. (2013). Nutritional recommendations for cardiovascular disease prevention. Nutrients, 5(9), 3646–3683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Anderson, J. W., Johnstone, B. M., & Cook-Newell, M. E. (1995). Meta-analysis of the effects of soy protein intake on serum lipids. The New England Journal of Medicine, 333(5), 276–282.

    Article  CAS  PubMed  Google Scholar 

  254. Rebholz, C. M., Reynolds, K., Wofford, M. R., Chen, J., Kelly, T. N., Mei, H., et al. (2013). Effect of soybean protein on novel cardiovascular disease risk factors: A randomized controlled trial. European Journal of Clinical Nutrition, 67(1), 58–63.

    Article  CAS  PubMed  Google Scholar 

  255. Nagata, C., Wada, K., Tamura, T., Konishi, K., Goto, Y., Koda, S., et al. (2017). Dietary soy and natto intake and cardiovascular disease mortality in Japanese adults: The Takayama study. The American Journal of Clinical Nutrition, 105(2), 426–431.

    Article  CAS  PubMed  Google Scholar 

  256. Kou, T., Wang, Q., Cai, J., Song, J., Du, B., Zhao, K., et al. (2017). Effect of soybean protein on blood pressure in postmenopausal women: A meta-analysis of randomized controlled trials. Food & Function, 8(8), 2663–2671.

    Article  CAS  Google Scholar 

  257. Dong, J. Y., Tong, X., Wu, Z. W., Xun, P. C., He, K., & Qin, L. Q. (2011). Effect of soya protein on blood pressure: A meta-analysis of randomised controlled trials. The British Journal of Nutrition, 106(3), 317–326.

    Article  CAS  PubMed  Google Scholar 

  258. He, J., Gu, D., Wu, X., Chen, J., Duan, X., Chen, J., et al. (2005). Effect of soybean protein on blood pressure: A randomized, controlled trial. Annals of Internal Medicine, 143(1), 1–9.

    Article  CAS  PubMed  Google Scholar 

  259. Gil-Izquierdo, A., Penalvo, J. L., Gil, J. I., Medina, S., Horcajada, M. N., Lafay, S., et al. (2012). Soy isoflavones and cardiovascular disease epidemiological, clinical and -omics perspectives. Current Pharmaceutical Biotechnology, 13(5), 624–631.

    Article  CAS  PubMed  Google Scholar 

  260. Lichtenstein, A. H. (1998). Soy protein, isoflavones and cardiovascular disease risk. The Journal of Nutrition, 128(10), 1589–1592.

    Article  CAS  PubMed  Google Scholar 

  261. Liu, X. X., Li, S. H., Chen, J. Z., Sun, K., Wang, X. J., Wang, X. G., et al. (2012). Effect of soy isoflavones on blood pressure: A meta-analysis of randomized controlled trials. Nutrition, Metabolism, and Cardiovascular Diseases, 22(6), 463–470.

    Article  CAS  PubMed  Google Scholar 

  262. Fan, Y. Y., Ramos, K. S., & Chapkin, R. S. (2001). Dietary gamma-linolenic acid suppresses aortic smooth muscle cell proliferation and modifies atherosclerotic lesions in apolipoprotein E knockout mice. The Journal of Nutrition, 131(6), 1675–1681.

    Article  CAS  PubMed  Google Scholar 

  263. Tsukamoto, I., & Sugawara, S. (2018). Low levels of linoleic acid and α-linolenic acid and high levels of arachidonic acid in plasma phospholipids are associated with hypertension. Biomedical Reports, 8(1), 69–76.

    CAS  PubMed  Google Scholar 

  264. Ramdath, D. D., Padhi, E. M., Sarfaraz, S., Renwick, S., & Duncan, A. M. (2017). Beyond the cholesterol-lowering effect of soy protein: A review of the effects of dietary soy and its constituents on risk factors for cardiovascular disease. Nutrients, 9(4), 324.

    Article  CAS  PubMed Central  Google Scholar 

  265. Rivas, M., Garay, R. P., Escanero, J. F., Cia Jr., P., Cia, P., & Alda, J. O. (2002). Soy milk lowers blood pressure in men and women with mild to moderate essential hypertension. The Journal of Nutrition, 132(7), 1900–1902.

    Article  CAS  PubMed  Google Scholar 

  266. Marangoni, F., & Poli, A. (2010). Phytosterols and cardiovascular health. Pharmacological Research, 61(3), 193–199.

    Article  CAS  PubMed  Google Scholar 

  267. Lin, X., Racette, S. B., Lefevre, M., Spearie, C. A., Most, M., Ma, L., et al. (2010). The effects of phytosterols present in natural food matrices on cholesterol metabolism and LDL-cholesterol: A controlled feeding trial. European Journal of Clinical Nutrition, 64(12), 1481–1487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Ferguson, J. J., Stojanovski, E., MacDonald-Wicks, L., & Garg, M. L. (2016). Fat type in phytosterol products influence their cholesterol-lowering potential: A systematic review and meta-analysis of RCTs. Progress in Lipid Research, 64, 16–29.

    Article  CAS  PubMed  Google Scholar 

  269. Sathyapalan, T., Manuchehri, A. M., Thatcher, N. J., Rigby, A. S., Chapman, T., Kilpatrick, E. S., et al. (2011). The effect of soy phytoestrogen supplementation on thyroid status and cardiovascular risk markers in patients with subclinical hypothyroidism: A randomized, double-blind, crossover study. The Journal of Clinical Endocrinology and Metabolism, 96(5), 1442–1449.

    Article  CAS  PubMed  Google Scholar 

  270. Rietjens, I. M. C. M., Louisse, J., & Beekmann, K. (2017). The potential health effects of dietary phytoestrogens. British Journal of Pharmacology, 174(11), 1263–1280.

    Article  CAS  PubMed  Google Scholar 

  271. Kalaiselvan, V., Kalaivani, M., Vijayakumar, A., Sureshkumar, K., & Venkateskumar, K. (2010). Current knowledge and future direction of research on soy isoflavones as a therapeutic agents. Pharmacognosy Reviews, 4(8), 111–117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Kaushik, S., Shyam, H., Sharma, R., & Balapure, A. K. (2018). Dietary isoflavone daidzein synergizes centchroman action via induction of apoptosis and inhibition of PI3K/Akt pathway in MCF-7/MDA MB-231 human breast cancer cells. Phytomedicine, 40, 116–124.

    Article  CAS  PubMed  Google Scholar 

  273. Trock, B. J., Hilakivi-Clarke, L., & Clarke, R. (2006). Meta-analysis of soy intake and breast cancer risk. Journal of the National Cancer Institute, 98(7), 459–471.

    Article  CAS  PubMed  Google Scholar 

  274. Ziaei, S., & Halaby, R. (2017). Dietary isoflavones and breast Cancer risk. Medicines (Basel, Switzerland), 4(2), 18.

    Google Scholar 

  275. Sarkar, F. H., & Li, Y. (2003). Soy isoflavones and cancer prevention. Cancer Investigation, 21(5), 744–757.

    Article  CAS  PubMed  Google Scholar 

  276. Takagi, A., Kano, M., & Kaga, C. (2015). Possibility of breast cancer prevention: Use of soy isoflavones and fermented soy beverage produced using probiotics. International Journal of Molecular Sciences, 16(5), 10907–10920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Messina, M. (2016). Impact of soy foods on the development of breast cancer and the prognosis of breast cancer patients. Forschende Komplementärmedizin, 23(2), 75–80.

    PubMed  Google Scholar 

  278. Douglas, C. C., Johnson, S. A., & Arjmandi, B. H. (2013). Soy and its isoflavones: The truth behind the science in breast cancer. Anti-Cancer Agents in Medicinal Chemistry, 13(8), 1178–1187.

    Article  CAS  PubMed  Google Scholar 

  279. Tsuchiya, M., Miura, T., Hanaoka, T., Iwasaki, M., Sasaki, H., Tanaka, T., et al. (2007). Effect of soy isoflavones on endometriosis: Interaction with estrogen receptor 2 gene polymorphism. Epidemiology, 18(3), 402–408.

    Article  PubMed  Google Scholar 

  280. Wu, S. H., & Liu, Z. (2013). Soy food consumption and lung cancer risk: A meta-analysis using a common measure across studies. Nutrition and Cancer, 65(5), 625–632.

    Article  CAS  PubMed  Google Scholar 

  281. Weng, K.-G., & Yuan, Y.-L. (2017). Soy food intake and risk of gastric cancer: A dose-response meta-analysis of prospective studies. Medicine, 96(33), –e7802.

    Google Scholar 

  282. Lu, D., Pan, C., Ye, C., Duan, H., Xu, F., Yin, L., et al. (2017). Meta-analysis of soy consumption and gastrointestinal cancer risk. Scientific Reports, 7(1), 4048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Wada, K., Tsuji, M., Tamura, T., Konishi, K., Goto, Y., Mizuta, F., et al. (2018). Soy isoflavone intake and bladder Cancer risk in Japan: From the Takayama study. Cancer Epidemiology, Biomarkers & Prevention, 27(11), 1371–1375.

    Article  CAS  Google Scholar 

  284. Mahmoud, A. M., Yang, W., & Bosland, M. C. (2014). Soy isoflavones and prostate cancer: A review of molecular mechanisms. The Journal of Steroid Biochemistry and Molecular Biology, 140, 116–132.

    Article  CAS  PubMed  Google Scholar 

  285. Applegate, C. C., Rowles, J. L., Ranard, K. M., Jeon, S., & Erdman, J. W. (2018). Soy consumption and the risk of prostate cancer: An updated systematic review and meta-analysis. Nutrients, 10(1), 40.

    Article  CAS  PubMed Central  Google Scholar 

  286. Park, S., Bazer, F. W., Lim, W., & Song, G. (2018). The O-methylated isoflavone, formononetin, inhibits human ovarian cancer cell proliferation by sub G0/G1 cell phase arrest through PI3K/AKT and ERK1/2 inactivation. Journal of Cellular Biochemistry, 119(9), 7377–7387.

    Article  CAS  PubMed  Google Scholar 

  287. Song, Y., Liu, M., Yang, F. G., Cui, L. H., Lu, X. Y., & Chen, C. (2015). Dietary fibre and the risk of colorectal cancer: A case- control study. Asian Pacific Journal of Cancer Prevention, 16(9), 3747–3752.

    Article  CAS  PubMed  Google Scholar 

  288. Shin, A., Lee, J., Lee, J., Park, M. S., Park, J. W., Park, S. C., et al. (2015). Isoflavone and soyfood intake and colorectal cancer risk: A case-control study in Korea. PLoS One, 10(11), e0143228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Yu, Y., Jing, X., Li, H., Zhao, X., & Wang, D. (2016). Soy isoflavone consumption and colorectal cancer risk: A systematic review and meta-analysis. Scientific Reports, 6, 25939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. de Mejia, E. G., Bradford, T., & Hasler, C. (2003). The anticarcinogenic potential of soybean lectin and lunasin. Nutrition Reviews, 61(7), 239–246.

    Article  PubMed  Google Scholar 

  291. Hsieh, C.-C., Hernández-Ledesma, B., & de Lumen, B. (2011). Lunasin, a new breast cancer chemopreventive seed peptide. In Breast cancer—Current and alternative therapeutic modalities (Vol. 11, pp. 215–242). London: IntechOpen.

    Google Scholar 

  292. Hernández-Ledesma, B., Hsieh, C. C., Dia, V., González de Mejia, E., & de Lumen, B. (2011). Lunasin, a cancer preventive seed peptide. In Soybean and health (p. 145). London: IntechOpen.

    Google Scholar 

  293. Shi, Z., Sun, R., Yu, T., Liu, R., Cheng, L. J., Bao, J. K., et al. (2016). Identification of novel pathways in plant lectin-induced cancer cell apoptosis. International Journal of Molecular Sciences, 17(2), 228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Yu, J., Bi, X., Yu, B., & Chen, D. (2016). Isoflavones: Anti-inflammatory benefit and possible caveats. Nutrients, 8(6), 361.

    Article  CAS  PubMed Central  Google Scholar 

  295. Zhu, Y., Li, H., & Wang, X. (2017). Lunasin abrogates monocytes to endothelial cells. Molecular Immunology, 92, 146–150.

    Article  CAS  PubMed  Google Scholar 

  296. Nguyen, C. T., Pham, N. M., Do, V. V., Binns, C. W., Hoang, V. M., Dang, D. A., et al. (2017). Soyfood and isoflavone intake and risk of type 2 diabetes in Vietnamese adults. European Journal of Clinical Nutrition, 71(10), 1186–1192.

    Article  CAS  PubMed  Google Scholar 

  297. Ding, M., Pan, A., Manson, J. E., Willett, W. C., Malik, V., Rosner, B., et al. (2016). Consumption of soy foods and isoflavones and risk of type 2 diabetes: A pooled analysis of three US cohorts. European Journal of Clinical Nutrition, 70(12), 1381–1387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Kwon, S. H., Ahn, I. S., Kim, S. O., Kong, C. S., Chung, H. Y., Do, M. S., et al. (2007). Anti-obesity and hypolipidemic effects of black soybean anthocyanins. Journal of Medicinal Food, 10(3), 552–556.

    Article  CAS  PubMed  Google Scholar 

  299. Chang, J. H., Kim, M. S., Kim, T. W., & Lee, S. S. (2008). Effects of soybean supplementation on blood glucose, plasma lipid levels, and erythrocyte antioxidant enzyme activity in type 2 diabetes mellitus patients. Nutrition Research and Practice, 2(3), 152–157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Mueller, N. T., Odegaard, A. O., Gross, M. D., Koh, W. P., Yu, M. C., Yuan, J. M., et al. (2012). Soy intake and risk of type 2 diabetes in Chinese Singaporeans [corrected]. European Journal of Nutrition, 51(8), 1033–1040.

    Article  CAS  PubMed  Google Scholar 

  301. Akhlaghi, M., Zare, M., & Nouripour, F. (2017). Effect of soy and soy Isoflavones on obesity-related anthropometric measures: A systematic review and meta-analysis of randomized controlled clinical trials. Advances in Nutrition, 8(5), 705–717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Karamali, M., Kashanian, M., Alaeinasab, S., & Asemi, Z. (2018). The effect of dietary soy intake on weight loss, glycaemic control, lipid profiles and biomarkers of inflammation and oxidative stress in women with polycystic ovary syndrome: A randomised clinical trial. Journal of Human Nutrition and Dietetics, 31(4), 533–543.

    Article  CAS  PubMed  Google Scholar 

  303. Velasquez, M. T., & Bhathena, S. J. (2007). Role of dietary soy protein in obesity. International Journal of Medical Sciences, 4(2), 72–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Fontaine, K. R., Yang, D., Gadbury, G. L., Heshka, S., Schwartz, L. G., Murugesan, R., et al. (2003). Results of soy-based meal replacement formula on weight, anthropometry, serum lipids & blood pressure during a 40-week clinical weight loss trial. Nutrition Journal, 2, 14.

    Article  PubMed  PubMed Central  Google Scholar 

  305. Messina, M. (2014). Soy foods, isoflavones, and the health of postmenopausal women. The American Journal of Clinical Nutrition, 100(Suppl 1), 423s–430s.

    Article  CAS  PubMed  Google Scholar 

  306. Ahsan, M., & Mallick, A. K. (2017). The effect of soy isoflavones on the menopause rating scale scoring in perimenopausal and postmenopausal women: A pilot study. Journal of Clinical and Diagnostic Research, 11(9), FC13–FC16.

    CAS  PubMed  PubMed Central  Google Scholar 

  307. Jou, H. J., Wu, S. C., Chang, F. W., Ling, P. Y., Chu, K. S., & Wu, W. H. (2008). Effect of intestinal production of equol on menopausal symptoms in women treated with soy isoflavones. International Journal of Gynaecology and Obstetrics, 102(1), 44–49.

    Article  CAS  PubMed  Google Scholar 

  308. Zheng, X., Lee, S.-K., & Chun, O. K. (2016). Soy isoflavones and osteoporotic bone loss: A review with an emphasis on modulation of bone remodeling. Journal of Medicinal Food, 19(1), 1–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Powles, T. (2004). Isoflavones and women’s health. Breast Cancer Research, 6(3), 140–142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Wong, W. W., Lewis, R. D., Steinberg, F. M., Murray, M. J., Cramer, M. A., Amato, P., et al. (2009). Soy isoflavone supplementation and bone mineral density in menopausal women: A 2-y multicenter clinical trial. The American Journal of Clinical Nutrition, 90(5), 1433–1439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Bolca, S., Bracke, M., & Depypere, H. (2012). Soy consumption during menopause. Facts, Views & Vision in ObGyn, 4(1), 30–37.

    CAS  Google Scholar 

  312. Li, L., Lv, Y., Xu, L., & Zheng, Q. (2015). Quantitative efficacy of soy isoflavones on menopausal hot flashes. British Journal of Clinical Pharmacology, 79(4), 593–604.

    Article  CAS  PubMed  Google Scholar 

  313. Lambert, M. N. T., Thybo, C. B., Lykkeboe, S., Rasmussen, L. M., Frette, X., Christensen, L. P., et al. (2017). Combined bioavailable isoflavones and probiotics improve bone status and estrogen metabolism in postmenopausal osteopenic women: A randomized controlled trial. The American Journal of Clinical Nutrition, 106(3), 909–920.

    CAS  PubMed  Google Scholar 

  314. Basset, G. J., Latimer, S., Fatihi, A., Soubeyrand, E., & Block, A. (2017). Phylloquinone (vitamin K1): Occurrence, biosynthesis and functions. Mini Reviews in Medicinal Chemistry, 17(12), 1028–1038.

    Article  CAS  PubMed  Google Scholar 

  315. Lanou, A. J. (2011). Soy foods: Are they useful for optimal bone health? Therapeutic Advances in Musculoskeletal Disease, 3(6), 293–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Reinwald, S., & Weaver, C. M. (2010). Soy components vs. whole soy: Are we betting our bones on a long shot? The Journal of Nutrition, 140(12), 2312S–2317S.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. Martinez-Villaluenga, C., Frias, J., & Vidal-Valverde, C. (2008). Alpha-galactosides: Antinutritional factors or functional ingredients? Critical Reviews in Food Science and Nutrition, 48(4), 301–316.

    Article  CAS  PubMed  Google Scholar 

  318. Ong, D. K., Mitchell, S. B., Barrett, J. S., Shepherd, S. J., Irving, P. M., Biesiekierski, J. R., et al. (2010). Manipulation of dietary short chain carbohydrates alters the pattern of gas production and genesis of symptoms in irritable bowel syndrome. Journal of Gastroenterology and Hepatology, 25(8), 1366–1373.

    Article  CAS  PubMed  Google Scholar 

  319. Bingemann, T. A., Sood, P., & Jarvinen, K. M. (2018). Food protein-induced enterocolitis syndrome. Immunology and Allergy Clinics of North America, 38(1), 141–152.

    Article  PubMed  Google Scholar 

  320. Cordle, C. T. (2004). Soy protein allergy: Incidence and relative severity. The Journal of Nutrition, 134(5), 1213S–1219S.

    Article  PubMed  Google Scholar 

  321. Cantani, A., & Lucenti, P. (1997). Natural history of soy allergy and/or intolerance in children, and clinical use of soy-protein formulas. Pediatric Allergy and Immunology, 8(2), 59–74.

    Article  CAS  PubMed  Google Scholar 

  322. Peng, C., Cao, C., He, M., Shu, Y., Tang, X., Wang, Y., et al. (2018). Soybean glycinin- and beta-conglycinin-induced intestinal damage in piglets via the p38/JNK/NF-kappaB Signaling pathway. Journal of Agricultural and Food Chemistry, 66(36), 9534–9541.

    Article  CAS  PubMed  Google Scholar 

  323. Doerge, D. R., & Sheehan, D. M. (2002). Goitrogenic and estrogenic activity of soy isoflavones. Environmental Health Perspectives, 110(Suppl 3), 349–353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Messina, M., & Redmond, G. (2006). Effects of soy protein and soybean isoflavones on thyroid function in healthy adults and hypothyroid patients: A review of the relevant literature. Thyroid, 16(3), 249–258.

    Article  CAS  PubMed  Google Scholar 

  325. Nakamura, Y., Ohsawa, I., Goto, Y., Tsuji, M., Oguchi, T., Sato, N., et al. (2017). Soy isoflavones inducing overt hypothyroidism in a patient with chronic lymphocytic thyroiditis: A case report. Journal of Medical Case Reports, 11(1), 253.

    Article  PubMed  PubMed Central  Google Scholar 

  326. Wang, H., Chen, Y., Hua, Y., Kong, X., & Zhang, C. (2014). Effects of phytase-assisted processing method on physicochemical and functional properties of soy protein isolate. Journal of Agricultural and Food Chemistry, 62(45), 10989–10997.

    Article  CAS  PubMed  Google Scholar 

  327. Gupta, R. K., Gupta, K., Sharma, A., Das, M., Ansari, I. A., & Dwivedi, P. D. (2017). Health risks and benefits of chickpea (Cicer arietinum) consumption. Journal of Agricultural and Food Chemistry, 65(1), 6–22.

    Article  CAS  PubMed  Google Scholar 

  328. Wallace, T. C., Murray, R., & Zelman, K. M. (2016). The nutritional value and health benefits of chickpeas and hummus. Nutrients, 8(12), 766.

    Article  CAS  PubMed Central  Google Scholar 

  329. Jukanti, A. K., Gaur, P. M., Gowda, C. L., & Chibbar, R. N. (2012). Nutritional quality and health benefits of chickpea (Cicer arietinum L.): A review. The British Journal of Nutrition, 108, S11–S26.

    Article  CAS  PubMed  Google Scholar 

  330. Aguilera, Y., Duenas, M., Estrella, I., Hernández, T., Benitez, V., Esteban, R. M., et al. (2011). Phenolic profile and antioxidant capacity of chickpeas (Cicer arietinum L.) as affected by a dehydration process. Plant Foods for Human Nutrition, 66(2), 187–195.

    Article  CAS  PubMed  Google Scholar 

  331. Segev, A., Badani, H., Kapulnik, Y., Shomer, I., Oren-Shamir, M., & Galili, S. (2010). Determination of polyphenols, flavonoids, and antioxidant capacity in colored chickpea (Cicer arietinum L.). Journal of Food Science, 75(2), S115–S119.

    Article  CAS  PubMed  Google Scholar 

  332. Singh, B., Singh, J. P., Shevkani, K., Singh, N., & Kaur, A. (2017). Bioactive constituents in pulses and their health benefits. Journal of Food Science and Technology, 54(4), 858–870.

    Article  CAS  PubMed  Google Scholar 

  333. Xiaoli, X., Yang, L., Shuang, H., Li, W., Yi, S., Hao, M., et al. (2008). Determination of oligosaccharide contents in 19 cultivars of chickpea (Cicer arietinum L) seeds by high performance liquid chromatograph. Food Chemistry, 111(1), 215–219.

    Article  CAS  Google Scholar 

  334. Veronese, N., Solmi, M., Caruso, M. G., Giannelli, G., Osella, A. R., Evangelou, E., et al. (2018). Dietary fiber and health outcomes: An umbrella review of systematic reviews and meta-analyses. The American Journal of Clinical Nutrition, 107(3), 436–444.

    Article  PubMed  Google Scholar 

  335. Otles, S., & Ozgoz, S. (2014). Health effects of dietary fiber. Acta Scientiarum Polonorum. Technologia Alimentaria, 13(2), 191–202.

    Article  CAS  PubMed  Google Scholar 

  336. Wu, G. (2016). Dietary protein intake and human health. Food & Function, 7(3), 1251–1265.

    Article  CAS  Google Scholar 

  337. Pedersen, A. N., Kondrup, J., & Børsheim, E. (2013). Health effects of protein intake in healthy adults: A systematic literature review. Food & Nutrition Research, 57, 21245. https://doi.org/10.3402/fnr.v57i0.21245

    Article  CAS  Google Scholar 

  338. Lattimer, J. M., & Haub, M. D. (2010). Effects of dietary fiber and its components on metabolic health. Nutrients, 2(12), 1266–1289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  339. Wilde, P. J. (2009). Eating for life: Designing foods for appetite control. Journal of Diabetes Science and Technology, 3(2), 366–370.

    Article  PubMed  PubMed Central  Google Scholar 

  340. Clark, M. J., & Slavin, J. L. (2013). The effect of fiber on satiety and food intake: A systematic review. Journal of the American College of Nutrition, 32(3), 200–211.

    Article  CAS  PubMed  Google Scholar 

  341. Astrup, A., Westman, E., Mattes, R. D., Wolfe, R. R., Astrup, A., & Westerterp-Plantenga, M. (2008). Protein, weight management, and satiety. The American Journal of Clinical Nutrition, 87(5), 1558S–1561S.

    Article  PubMed  Google Scholar 

  342. Slavin, J. L. (2005). Dietary fiber and body weight. Nutrition, 21(3), 411–418.

    Article  PubMed  Google Scholar 

  343. Pesta, D. H., & Samuel, V. T. (2014). A high-protein diet for reducing body fat: Mechanisms and possible caveats. Nutrition & Metabolism, 11(1), 53.

    Article  CAS  Google Scholar 

  344. O’Neil, C. E., Nicklas, T. A., & Fulgoni III, V. L. (2014). Chickpeas and hummus are associated with better nutrient intake, diet quality, and levels of some cardiovascular risk factors: National health and nutrition examination survey 2003-2010. Journal of Nutrition & Food Sciences, 4(1), 1000254.

    Google Scholar 

  345. Murty, C. M., Pittaway, J. K., & Ball, M. J. (2010). Chickpea supplementation in an Australian diet affects food choice, satiety and bowel health. Appetite, 54(2), 282–288.

    Article  CAS  PubMed  Google Scholar 

  346. Zafar, T. A., & Kabir, Y. (2017). Chickpeas suppress postprandial blood glucose concentration, and appetite and reduce energy intake at the next meal. Journal of Food Science and Technology, 54(4), 987–994.

    Article  CAS  PubMed  Google Scholar 

  347. Li, Y., Jiang, B., Zhang, T., Mu, W., & Liu, J. (2008). Antioxidant and free radical-scavenging activities of chickpea protein hydrolysate (CPH). Food Chemistry, 106(2), 444–450.

    Article  CAS  Google Scholar 

  348. Pittaway, J. K., Robertson, I. K., & Ball, M. J. (2008). Chickpeas may influence fatty acid and fiber intake in an ad libitum diet, leading to small improvements in serum lipid profile and glycemic control. Journal of the American Dietetic Association, 108(6), 1009–1013.

    Article  CAS  PubMed  Google Scholar 

  349. Nestel, P., Cehun, M., & Chronopoulos, A. (2004). Effects of long-term consumption and single meals of chickpeas on plasma glucose, insulin, and triacylglycerol concentrations. The American Journal of Clinical Nutrition, 79(3), 390–395.

    Article  CAS  PubMed  Google Scholar 

  350. Augustin, L. S., Chiavaroli, L., Campbell, J., Ezatagha, A., Jenkins, A. L., Esfahani, A., et al. (2016). Post-prandial glucose and insulin responses of hummus alone or combined with a carbohydrate food: A dose-response study. Nutrition Journal, 15, 13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  351. Kwon, Y. I., Apostolidis, E., Kim, Y. C., & Shetty, K. (2007). Health benefits of traditional corn, beans, and pumpkin: In vitro studies for hyperglycemia and hypertension management. Journal of Medicinal Food, 10(2), 266–275.

    Article  CAS  PubMed  Google Scholar 

  352. Villegas, R., Gao, Y. T., Yang, G., Li, H. L., Elasy, T. A., Zheng, W., et al. (2008). Legume and soy food intake and the incidence of type 2 diabetes in the Shanghai Women’s health study. The American Journal of Clinical Nutrition, 87(1), 162–167.

    Article  CAS  PubMed  Google Scholar 

  353. Keller, U. (2011). Dietary proteins in obesity and in diabetes. International Journal for Vitamin and Nutrition Research, 81(2–3), 125–133.

    Article  CAS  PubMed  Google Scholar 

  354. Asif, M. (2014). The prevention and control the type-2 diabetes by changing lifestyle and dietary pattern. Journal of Education and Health Promotion, 3, 1.

    Article  PubMed  PubMed Central  Google Scholar 

  355. Hosseinpour-Niazi, S., Mirmiran, P., Hedayati, M., & Azizi, F. (2015). Substitution of red meat with legumes in the therapeutic lifestyle change diet based on dietary advice improves cardiometabolic risk factors in overweight type 2 diabetes patients: A cross-over randomized clinical trial. European Journal of Clinical Nutrition, 69(5), 592–597.

    Article  CAS  PubMed  Google Scholar 

  356. Valdes-Ramos, R., Guadarrama-López, A. L., Martínez-Carrillo, B. E., & Benítez-Arciniega, A. D. (2015). Vitamins and type 2 diabetes mellitus. Endocrine, Metabolic & Immune Disorders Drug Targets, 15(1), 54–63.

    Article  CAS  Google Scholar 

  357. Barbagallo, M., & Dominguez, L. J. (2015). Magnesium and type 2 diabetes. World Journal of Diabetes, 6(10), 1152–1157.

    Article  PubMed  PubMed Central  Google Scholar 

  358. Castro, H., & Raij, L. (2013). Potassium in hypertension and cardiovascular disease. Seminars in Nephrology, 33(3), 277–289.

    Article  CAS  PubMed  Google Scholar 

  359. Geiger, H., & Wanner, C. (2012). Magnesium in disease. Clinical Kidney Journal, 5(Suppl 1), i25–i38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  360. Pittaway, J. K., Ahuja, K. D., Cehun, M., Chronopoulos, A., Robertson, I. K., Nestel, P. J., et al. (2006). Dietary supplementation with chickpeas for at least 5 weeks results in small but significant reductions in serum total and low-density lipoprotein cholesterols in adult women and men. Annals of Nutrition & Metabolism, 50(6), 512–518.

    Article  CAS  Google Scholar 

  361. Pittaway, J. K., Ahuja, K. D., Robertson, I. K., & Ball, M. J. (2007). Effects of a controlled diet supplemented with chickpeas on serum lipids, glucose tolerance, satiety and bowel function. Journal of the American College of Nutrition, 26(4), 334–340.

    Article  CAS  PubMed  Google Scholar 

  362. Bazzano, L. A., Thompson, A. M., Tees, M. T., Nguyen, C. H., & Winham, D. M. (2011). Non-soy legume consumption lowers cholesterol levels: A meta-analysis of randomized controlled trials. Nutrition, Metabolism, and Cardiovascular Diseases, 21(2), 94–103.

    Article  CAS  PubMed  Google Scholar 

  363. Moreno Franco, B., León Latre, M., Andrés Esteban, E. M., Ordovás, J. M., Casasnovas, J. A., & Peñalvo, J. L. (2014). Soluble and insoluble dietary fibre intake and risk factors for metabolic syndrome and cardiovascular disease in middle-aged adults: The AWHS cohort. Nutrición Hospitalaria, 30(6), 1279–1288.

    PubMed  Google Scholar 

  364. Graf, D., Di Cagno, R., Fåk, F., Flint, H. J., Nyman, M., Saarela, M., et al. (2015). Contribution of diet to the composition of the human gut microbiota. Microbial Ecology in Health and Disease, 26, –26164.

    Google Scholar 

  365. Grela, E. R., Samolińska, W., Kiczorowska, B., Klebaniuk, R., & Kiczorowski, P. (2017). Content of minerals and fatty acids and their correlation with phytochemical compounds and antioxidant activity of leguminous seeds. Biological Trace Element Research, 180(2), 338–348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  366. Chrysant, S. G., & Chrysant, G. S. (2018). The current status of homocysteine as a risk factor for cardiovascular disease: A mini review. Expert Review of Cardiovascular Therapy, 16(8), 559–565.

    Article  CAS  PubMed  Google Scholar 

  367. El-Salhy, M., Ystad, S. O., Mazzawi, T., & Gundersen, D. (2017). Dietary fiber in irritable bowel syndrome (review). International Journal of Molecular Medicine, 40(3), 607–613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  368. Fernando, W. M., Hill, J. E., Zello, G. A., Tyler, R. T., Dahl, W. J., & Van Kessel, A. G. (2010). Diets supplemented with chickpea or its main oligosaccharide component raffinose modify faecal microbial composition in healthy adults. Beneficial Microbes, 1(2), 197–207.

    Article  CAS  PubMed  Google Scholar 

  369. Canani, R. B., Costanzo, M. D., Leone, L., Pedata, M., Meli, R., & Calignano, A. (2011). Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World Journal of Gastroenterology, 17(12), 1519–1528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  370. Bultman, S. J. (2014). Molecular pathways: Gene-environment interactions regulating dietary fiber induction of proliferation and apoptosis via butyrate for cancer prevention. Clinical Cancer Research, 20(4), 799–803.

    Article  CAS  PubMed  Google Scholar 

  371. Chen, J., & Vitetta, L. (2018). Inflammation-modulating effect of butyrate in the prevention of colon cancer by dietary Fiber. Clinical Colorectal Cancer, 17(3), e541–e544.

    Article  PubMed  Google Scholar 

  372. Shi, J., Arunasalam, K., Yeung, D., Kakuda, Y., Mittal, G., & Jiang, Y. (2004). Saponins from edible legumes: Chemistry, processing, and health benefits. Journal of Medicinal Food, 7(1), 67–78.

    Article  CAS  PubMed  Google Scholar 

  373. Koczurkiewicz, P., Czyż, J., Podolak, I., Wojcik, K., Galanty, A., Janeczko, Z., et al. (2015). Multidirectional effects of triterpene saponins on cancer cells - mini-review of in vitro studies. Acta Biochimica Polonica, 62(3), 383–393.

    Article  CAS  PubMed  Google Scholar 

  374. Podolak, I., Galanty, A., & Sobolewska, D. (2010). Saponins as cytotoxic agents: A review. Phytochemistry Reviews, 9(3), 425–474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  375. Chou, Y. C., Chu, C. H., Wu, M. H., Hsu, G. C., Yang, T., Chou, W. Y., et al. (2011). Dietary intake of vitamin B(6) and risk of breast cancer in Taiwanese women. Journal of Epidemiology, 21(5), 329–336.

    Article  PubMed  PubMed Central  Google Scholar 

  376. Yang, D., Baumgartner, R. N., Slattery, M. L., Wang, C., Giuliano, A. R., Murtaugh, M. A., et al. (2013). Dietary intake of folate, B-vitamins and methionine and breast cancer risk among Hispanic and non-Hispanic white women. PLoS One, 8(2), e54495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  377. Takata, Y., Cai, Q., Beeghly-Fadiel, A., Li, H., Shrubsole, M. J., Ji, B. T., et al. (2012). Dietary B vitamin and methionine intakes and lung cancer risk among female never smokers in China. Cancer Causes & Control, 23(12), 1965–1975.

    Article  Google Scholar 

  378. El-Adawy, T. A. (2002). Nutritional composition and antinutritional factors of chickpeas (Cicer arietinum L.) undergoing different cooking methods and germination. Plant Foods for Human Nutrition, 57(1), 83–97.

    Article  CAS  PubMed  Google Scholar 

  379. van Vliet, S., Burd, N. A., & van Loon, L. J. (2015). The skeletal muscle anabolic response to plant- versus animal-based protein consumption. The Journal of Nutrition, 145(9), 1981–1991.

    Article  PubMed  Google Scholar 

  380. Vigani, G., & Murgia, I. (2018). Iron-requiring enzymes in the spotlight of oxygen. Trends in Plant Science, 23(10), 874–882.

    Article  CAS  PubMed  Google Scholar 

  381. Montesano, D., Blasi, F., Simonetti, M. S., Santini, A., & Cossignani, L. (2018). Chemical and nutritional characterization of seed oil from Cucurbita maxima L. (var. Berrettina) pumpkin. Foods (Basel, Switzerland), 7(3), 30.

    Google Scholar 

  382. Lestari, B., & Meiyanto, E. (2018). A review: The emerging nutraceutical potential of pumpkin seeds. Indonesian Journal of Cancer Chemoprevention, 9(2), 92–101.

    Article  Google Scholar 

  383. Procida, G., Stancher, B., Cateni, F., & Zacchigna, M. (2013). Chemical composition and functional characterisation of commercial pumpkin seed oil. Journal of the Science of Food and Agriculture, 93(5), 1035–1041.

    Article  CAS  PubMed  Google Scholar 

  384. Glew, R. H., Glew, R. S., Chuang, L. T., Huang, Y. S., Millson, M., Constans, D., et al. (2006). Amino acid, mineral and fatty acid content of pumpkin seeds (Cucurbita spp) and Cyperus esculentus nuts in the Republic of Niger. Plant Foods for Human Nutrition, 61(2), 51–56.

    Article  CAS  PubMed  Google Scholar 

  385. Yadav, M., Jain, S., Tomar, R., Prasad, G. B., & Yadav, H. (2010). Medicinal and biological potential of pumpkin: An updated review. Nutrition Research Reviews, 23(2), 184–190.

    Article  CAS  PubMed  Google Scholar 

  386. Martha Perez Gutierrez, R. (2016). Review of Cucurbita pepo (pumpkin) its phytochemistry and pharmacology. Medicinal Chemistry, 6(1), 12–21.

    Google Scholar 

  387. Patel, S. (2013). Pumpkin (Cucurbita sp.) seeds as nutraceutic: A review on status quo and scopes. Mediterranean Journal of Nutrition and Metabolism, 6(3), 183–189.

    Article  Google Scholar 

  388. Dar, A., Sofi, S. A., & Rafiq, S. (2017). Pumpkin the functional and therapeutic ingredient: A review. International Journal of Food Sciences and Nutrition, 2(6), 165–170.

    Google Scholar 

  389. Caili, F., Huan, S., & Quanhong, L. (2006). A review on pharmacological activities and utilization technologies of pumpkin. Plant Foods for Human Nutrition, 61(2), 73–80.

    Article  CAS  PubMed  Google Scholar 

  390. Phillips, K. M., Ruggio, D. M., & Ashraf-Khorassani, M. (2005). Phytosterol composition of nuts and seeds commonly consumed in the United States. Journal of Agricultural and Food Chemistry, 53(24), 9436–9445.

    Article  CAS  PubMed  Google Scholar 

  391. Ryan, E., Galvin, K., O’Connor, T. P., Maguire, A. R., & O’Brien, N. M. (2007). Phytosterol, squalene, tocopherol content and fatty acid profile of selected seeds, grains, and legumes. Plant Foods for Human Nutrition, 62(3), 85–91.

    Article  CAS  PubMed  Google Scholar 

  392. Stevenson, D. G., Eller, F., Wang, L., Jane, J. L., Wang, T., & Inglett, G. E. (2007). Oil and tocopherol content and composition of pumpkin seed oil in 12 cultivars. Journal of Agricultural and Food Chemistry, 55(10), 4005–4013.

    Article  CAS  PubMed  Google Scholar 

  393. Siano, F., Straccia, M. C., Paolucci, M., Fasulo, G., Boscaino, F., & Volpe, M. G. (2016). Physico-chemical properties and fatty acid composition of pomegranate, cherry and pumpkin seed oils. Journal of the Science of Food and Agriculture, 96(5), 1730–1735.

    Article  CAS  PubMed  Google Scholar 

  394. Habib, A., Biswas, S., Siddique, A., Manirujjaman, M., Uddin, B., Hasan, S., et al. (2015). Nutritional and lipid composition analysis of pumpkin seed (Cucurbita maxima Linn.). Journal of Nutrition & Food Sciences, 5(4), 1000374.

    Google Scholar 

  395. Rezig, L., Chouaibi, M., Msaada, K., & Hamdi, S. (2012). Chemical composition and profile characterisation of pumpkin (Cucurbita maxima) seed oil. Industrial Crops and Products, 37(1), 82–87.

    Article  CAS  Google Scholar 

  396. Ganzera, M., Croom, E. M., & Khan, I. A. (1999). Determination of the fatty acid content of pumpkin seed, pygeum, and saw palmetto. Journal of Medicinal Food, 2(1), 21–27.

    Article  CAS  PubMed  Google Scholar 

  397. Murkovic, M., Hillebrand, J. A., Winkler, J., Leitner, E., & Pfannhauser, W. (1996). Variability of fatty acid content in pumpkin seeds (Cucurbita pepo L.). Zeitschrift für Lebensmittel-Untersuchung und -Forschung, 203(3), 216–219.

    Article  CAS  PubMed  Google Scholar 

  398. Peiretti, P. G., Meineri, G., Gai, F., Longato, E., & Amarowicz, R. (2017). Antioxidative activities and phenolic compounds of pumpkin (Cucurbita pepo) seeds and amaranth (Amaranthus caudatus) grain extracts. Natural Product Research, 31(18), 2178–2182.

    Article  CAS  PubMed  Google Scholar 

  399. Sabo, H. S., Sadou, H., Alma, M. M., Sidikou, R. S., Saadou, M., & Amoukou, I. A. (2014). Antioxidant activity and phenolics content of the seeds of eighteen varieties of edible cucurbitaceae of Niger. Journal of Food Resource Science, 3(1), 1–11.

    Article  Google Scholar 

  400. Saavedra, M. J., Aires, A., Dias, C., Almeida, J. A., De Vasconcelos, M. C., Santos, P., et al. (2015). Evaluation of the potential of squash pumpkin by-products (seeds and shell) as sources of antioxidant and bioactive compounds. Journal of Food Science and Technology, 52(2), 1008–1015.

    Article  CAS  PubMed  Google Scholar 

  401. Zdunić, G., Menković, N. R., Jadranin, M. B., Novaković, M. M., Šavikin, K. P., & Živković, J. C. (2016). Phenolic compounds and carotenoids in pumpkin fruit and related traditional products. Hemijska Industrija, 70(4), 429–433.

    Article  Google Scholar 

  402. Krimer-Malešević, V., Mađarev-Popović, S., Vaštag, Z., Radulović, L., & Peričin, D. (2011). Phenolic acids in pumpkin (Cucurbita pepo L.) seeds. In Nuts and seeds in health and disease prevention (pp. 925–932). Cambridge, MA: Academic.

    Chapter  Google Scholar 

  403. Andjelkovic, M., Van Camp, J., Trawka, A., & Verhé, R. (2010). Phenolic compounds and some quality parameters of pumpkin seed oil. European Journal of Lipid Science and Technology, 112(2), 208–217.

    Article  CAS  Google Scholar 

  404. Nawirska-Olszanska, A., Kita, A., Biesiada, A., Sokół-Łętowska, A., & Kucharska, A. Z. (2013). Characteristics of antioxidant activity and composition of pumpkin seed oils in 12 cultivars. Food Chemistry, 139(1–4), 155–161.

    Article  CAS  PubMed  Google Scholar 

  405. Murkovic, M., Hillebrand, A., Winkler, J., & Pfannhauser, W. (1996). Variability of vitamin E content in pumpkin seeds (Cucurbita pepo L.). Zeitschrift für Lebensmittel-Untersuchung und -Forschung, 202(4), 275–278.

    Article  CAS  PubMed  Google Scholar 

  406. Kim, M. Y., Kim, E. J., Kim, Y. N., Choi, C., & Lee, B. H. (2012). Comparison of the chemical compositions and nutritive values of various pumpkin (Cucurbitaceae) species and parts. Nutrition Research and Practice, 6(1), 21–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  407. Xanthopoulou, M. N., Nomikos, T., Fragopoulou, E., & Antonopoulou, S. (2009). Antioxidant and lipoxygenase inhibitory activities of pumpkin seed extracts. Food Research International, 42(5), 641–646.

    Article  CAS  Google Scholar 

  408. Fruhwirth, G. O., Wenzl, T., El‐Toukhy, R., Wagner, F. S., & Hermetter, A. (2003). Fluorescence screening of antioxidant capacity in pumpkin seed oils and other natural oils. European Journal of Lipid Science and Technology, 105(6), 266–274.

    Article  CAS  Google Scholar 

  409. Nkosi, C. Z., Opoku, A. R., & Terblanche, S. E. (2006). Antioxidative effects of pumpkin seed (Cucurbita pepo) protein isolate in CCl4-induced liver injury in low-protein fed rats. Phytotherapy Research, 20(11), 935–940.

    Article  CAS  PubMed  Google Scholar 

  410. Fahim, A. T., Abd-el Fattah, A. A., Agha, A. M., & Gad, M. Z. (1995). Effect of pumpkin-seed oil on the level of free radical scavengers induced during adjuvant-arthritis in rats. Pharmacological Research, 31(1), 73–79.

    Article  CAS  PubMed  Google Scholar 

  411. Mangge, H., Becker, K., Fuchs, D., & Gostner, J. M. (2014). Antioxidants, inflammation and cardiovascular disease. World Journal of Cardiology, 6(6), 462–477.

    Article  PubMed  PubMed Central  Google Scholar 

  412. Pham-Huy, L. A., He, H., & Pham-Huy, C. (2008). Free radicals, antioxidants in disease and health. International Journal of Biomedical Science: IJBS, 4(2), 89–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  413. El-Mosallamy, A. E., Sleem, A. A., Abdel-Salam, O. M., Shaffie, N., & Kenawy, S. A. (2012). Antihypertensive and cardioprotective effects of pumpkin seed oil. Journal of Medicinal Food, 15(2), 180–189.

    Article  PubMed  Google Scholar 

  414. Zuhair, H. A., Abd El-Fattah, A. A., & El-Sayed, M. I. (2000). Pumpkin-seed oil modulates the effect of felodipine and captopril in spontaneously hypertensive rats. Pharmacological Research, 41(5), 555–563.

    Article  CAS  PubMed  Google Scholar 

  415. Gossell-Williams, M., Hyde, C., Hunter, T., Simms-Stewart, D., Fletcher, H., McGrowder, D., et al. (2011). Improvement in HDL cholesterol in postmenopausal women supplemented with pumpkin seed oil: Pilot study. Climacteric, 14(5), 558–564.

    Article  CAS  PubMed  Google Scholar 

  416. Al-Zuhair, H., Abd el-Fattah, A. A., & Abd el Latif, H. A. (1997). Efficacy of simvastatin and pumpkin-seed oil in the management of dietary-induced hypercholesterolemia. Pharmacological Research, 35(5), 403–408.

    Article  CAS  PubMed  Google Scholar 

  417. Morrison, M. C., Mulder, P., Stavro, P. M., Suárez, M., Arola-Arnal, A., van Duyvenvoorde, W., et al. (2015). Replacement of dietary saturated fat by PUFA-rich pumpkin seed oil attenuates non-alcoholic fatty liver disease and atherosclerosis development, with additional health effects of virgin over refined oil. PLoS One, 10(9), e0139196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  418. Ristic-Medic, D., Perunicic-Pekovic, G., Rasic-Milutinovic, Z., Takic, M., Popovic, T., Arsic, A., et al. (2014). Effects of dietary milled seed mixture on fatty acid status and inflammatory markers in patients on hemodialysis. ScientificWorldJournal, 2014, 563576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  419. Witkowska, A. M., Waśkiewicz, A., Zujko, M. E., Szcześniewska, D., Pająk, A., Stepaniak, U., et al. (2017). Dietary polyphenol intake, but not the dietary total antioxidant capacity, is inversely related to cardiovascular disease in postmenopausal polish women: Results of WOBASZ and WOBASZ II studies. Oxidative Medicine and Cellular Longevity, 2017, 5982809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  420. Threapleton, D. E., Greenwood, D. C., Evans, C. E., Cleghorn, C. L., Nykjaer, C., Woodhead, C., et al. (2013). Dietary fibre intake and risk of cardiovascular disease: Systematic review and meta-analysis. BMJ, 347, f6879.

    Article  PubMed  PubMed Central  Google Scholar 

  421. Gupta, A. K., Savopoulos, C. G., Ahuja, J., & Hatzitolios, A. I. (2011). Role of phytosterols in lipid-lowering: Current perspectives. QJM: An International Journal of Medicine, 104(4), 301–308.

    Article  CAS  Google Scholar 

  422. McRae, M. P. (2016). Therapeutic benefits of l-arginine: An umbrella review of meta-analyses. Journal of Chiropractic Medicine, 15(3), 184–189.

    Article  PubMed  PubMed Central  Google Scholar 

  423. Kass, L., Weekes, J., & Carpenter, L. (2012). Effect of magnesium supplementation on blood pressure: A meta-analysis. European Journal of Clinical Nutrition, 66(4), 411–418.

    Article  CAS  PubMed  Google Scholar 

  424. Dibaba, D. T., Xun, P., Song, Y., Rosanoff, A., Shechter, M., & He, K. (2017). The effect of magnesium supplementation on blood pressure in individuals with insulin resistance, prediabetes, or noncommunicable chronic diseases: A meta-analysis of randomized controlled trials. The American Journal of Clinical Nutrition, 106(3), 921–929.

    CAS  PubMed  PubMed Central  Google Scholar 

  425. Peacock, J. M., Ohira, T., Post, W., Sotoodehnia, N., Rosamond, W., & Folsom, A. R. (2010). Serum magnesium and risk of sudden cardiac death in the atherosclerosis risk in communities (ARIC) study. American Heart Journal, 160(3), 464–470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  426. Medjakovic, S., Hobiger, S., Ardjomand-Woelkart, K., Bucar, F., & Jungbauer, A. (2016). Pumpkin seed extract: Cell growth inhibition of hyperplastic and cancer cells, independent of steroid hormone receptors. Fitoterapia, 110, 150–156.

    Article  CAS  PubMed  Google Scholar 

  427. Huang, X. E., Hirose, K., Wakai, K., Matsuo, K., Ito, H., Xiang, J., et al. (2004). Comparison of lifestyle risk factors by family history for gastric, breast, lung and colorectal cancer. Asian Pacific Journal of Cancer Prevention, 5(4), 419–427.

    PubMed  Google Scholar 

  428. Patisaul, H. B., & Jefferson, W. (2010). The pros and cons of phytoestrogens. Frontiers in Neuroendocrinology, 31(4), 400–419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  429. Bacciottini, L., Falchetti, A., Pampaloni, B., Bartolini, E., Carossino, A. M., & Brandi, M. L. (2007). Phytoestrogens: Food or drug? Clinical Cases in Mineral and Bone Metabolism, 4(2), 123–130.

    PubMed  PubMed Central  Google Scholar 

  430. Ibarreta, D., Daxenberger, A., & Meyer, H. H. (2001). Possible health impact of phytoestrogens and xenoestrogens in food. APMIS, 109(3), 161–184.

    Article  CAS  PubMed  Google Scholar 

  431. Richter, D., Abarzua, S., Chrobak, M., Vrekoussis, T., Weissenbacher, T., Kuhn, C., et al. (2013). Effects of phytoestrogen extracts isolated from pumpkin seeds on estradiol production and ER/PR expression in breast cancer and trophoblast tumor cells. Nutrition and Cancer, 65(5), 739–745.

    Article  CAS  PubMed  Google Scholar 

  432. Zaineddin, A. K., Buck, K., Vrieling, A., Heinz, J., Flesch-Janys, D., Linseisen, J., et al. (2012). The association between dietary lignans, phytoestrogen-rich foods, and fiber intake and postmenopausal breast cancer risk: A German case-control study. Nutrition and Cancer, 64(5), 652–665.

    Article  CAS  PubMed  Google Scholar 

  433. Rossi, R. E., Pericleous, M., Mandair, D., Whyand, T., & Caplin, M. E. (2014). The role of dietary factors in prevention and progression of breast cancer. Anticancer Research, 34(12), 6861–6875.

    CAS  PubMed  Google Scholar 

  434. Lee, M. Y., Shin, I. S., Kyoung, H., Seo, C. S., Son, J. K., & Shin, H. K. (2014). Alpha-spinasterol from Melandrium firmum attenuates benign prostatic hyperplasia in a rat model. Molecular Medicine Reports, 9(6), 2362–2366.

    Article  CAS  PubMed  Google Scholar 

  435. Jiang, J., Loganathan, J., Eliaz, I., Terry, C., Sandusky, G. E., & Sliva, D. (2012). ProstaCaid inhibits tumor growth in a xenograft model of human prostate cancer. International Journal of Oncology, 40(5), 1339–1344.

    CAS  PubMed  Google Scholar 

  436. Jiang, J., Eliaz, I., & Sliva, D. (2011). Suppression of growth and invasive behavior of human prostate cancer cells by ProstaCaid: Mechanism of activity. International Journal of Oncology, 38(6), 1675–1682.

    CAS  PubMed  Google Scholar 

  437. Fruhwirth, G. O., & Hermetter, A. (2007). Seeds and oil of the Styrian oil pumpkin: Components and biological activities. European Journal of Lipid Science and Technology, 109(11), 1128–1140.

    Article  CAS  Google Scholar 

  438. Gossell-Williams, M., Davis, A., & O’Connor, N. (2006). Inhibition of testosterone-induced hyperplasia of the prostate of sprague-dawley rats by pumpkin seed oil. Journal of Medicinal Food, 9(2), 284–286.

    Article  CAS  PubMed  Google Scholar 

  439. Hong, H., Kim, C. S., & Maeng, S. (2009). Effects of pumpkin seed oil and saw palmetto oil in Korean men with symptomatic benign prostatic hyperplasia. Nutrition Research and Practice, 3(4), 323–327.

    Article  PubMed  PubMed Central  Google Scholar 

  440. Tantawy, S. A., Elgohary, H. M., & Kamel, D. M. (2018). Trans-perineal pumpkin seed oil phonophoresis as an adjunctive treatment for chronic nonbacterial prostatitis. Research and Reports in Urology, 10, 95–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  441. Joshi, S., Nair, N., & Bedwal, R. S. (2014). Dietary zinc deficiency effects dorso-lateral and ventral prostate of Wistar rats: Histological, biochemical and trace element study. Biological Trace Element Research, 161(1), 91–100.

    Article  CAS  PubMed  Google Scholar 

  442. Nishimura, M., et al. (2014). Pumpkin seed oil extracted from Cucurbita maxima improves urinary disorder in human overactive bladder. Journal of Traditional and Complementary Medicine, 4(1), 72–74.

    Article  PubMed  PubMed Central  Google Scholar 

  443. Vahlensieck, W., Theurer, C., Pfitzer, E., Patz, B., Banik, N., & Engelmann, U. (2015). Effects of pumpkin seed in men with lower urinary tract symptoms due to benign prostatic hyperplasia in the one-year, randomized, placebo-controlled GRANU study. Urologia Internationalis, 94(3), 286–295.

    Article  CAS  PubMed  Google Scholar 

  444. Adams, G. G., Imran, S., Wang, S., Mohammad, A., Kok, M. S., Gray, D. A., et al. (2014). The hypoglycemic effect of pumpkin seeds, Trigonelline (TRG), nicotinic acid (NA), and D-Chiro-inositol (DCI) in controlling glycemic levels in diabetes mellitus. Critical Reviews in Food Science and Nutrition, 54(10), 1322–1329.

    Article  CAS  PubMed  Google Scholar 

  445. Kushawaha, D. K., Yadav, M., Chatterji, S., Srivastava, A. K., & Watal, G. (2017). Evidence based study of antidiabetic potential of C. maxima seeds - in vivo. Journal of Traditional and Complementary Medicine, 7(4), 466–470.

    Article  PubMed  PubMed Central  Google Scholar 

  446. Makni, M., Fetoui, H., Gargouri, N. K., Garoui, M., & Zeghal, N. (2011). Antidiabetic effect of flax and pumpkin seed mixture powder: Effect on hyperlipidemia and antioxidant status in alloxan diabetic rats. Journal of Diabetes and its Complications, 25(5), 339–345.

    Article  PubMed  Google Scholar 

  447. Song, H., & Sun, Z. (2017). Hypolipidaemic and hypoglycaemic properties of pumpkin polysaccharides. Biotech, 7(3), 159–159.

    Google Scholar 

  448. Candido, F. G., de Oliveira, F. C. E., Lima, M. F. C., Pinto, C. A., da Silva, L. L., Martino, H. S. D., et al. (2018). Addition of pooled pumpkin seed to mixed meals reduced postprandial glycemia: A randomized placebo-controlled clinical trial. Nutrition Research, 56, 90–97.

    Article  CAS  PubMed  Google Scholar 

  449. Mahmoodpoor, A., Medghalchi, M., Nazemiyeh, H., Asgharian, P., Shadvar, K., & Hamishehkar, H. (2018). Effect of Cucurbita Maxima on control of blood glucose in diabetic critically ill patients. Advanced Pharmaceutical Bulletin, 8(2), 347–351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  450. Lopez-Ridaura, R., Willett, W. C., Rimm, E. B., Liu, S., Stampfer, M. J., Manson, J. E., et al. (2004). Magnesium intake and risk of type 2 diabetes in men and women. Diabetes Care, 27(1), 134–140.

    Article  CAS  PubMed  Google Scholar 

  451. Rodriguez-Moran, M., Mendía, L. E. S., Galván, G. Z., & Guerrero-Romero, F. (2011). The role of magnesium in type 2 diabetes: A brief based-clinical review. Magnesium Research, 24(4), 156–162.

    CAS  PubMed  Google Scholar 

  452. Gannon, M. C., Nuttall, F. Q., Saeed, A., Jordan, K., & Hoover, H. (2003). An increase in dietary protein improves the blood glucose response in persons with type 2 diabetes. The American Journal of Clinical Nutrition, 78(4), 734–741.

    Article  CAS  PubMed  Google Scholar 

  453. Skerrett, P. J., & Willett, W. C. (2010). Essentials of healthy eating: A guide. Journal of Midwifery & Women’s Health, 55(6), 492–501.

    Article  Google Scholar 

  454. Tapsell, L. C., Batterham, M. J., Thorne, R. L., O’Shea, J. E., Grafenauer, S. J., & Probst, Y. C. (2014). Weight loss effects from vegetable intake: A 12-month randomised controlled trial. European Journal of Clinical Nutrition, 68(7), 778–785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  455. Pramuková, B., Szabadosová, V., & Soltésová, A. (2011). Current knowledge about sports nutrition. The Australasian Medical Journal, 4(3), 107–110.

    Article  PubMed  PubMed Central  Google Scholar 

  456. Cherbuin, N., Kumar, R., Sachdev, P. S., & Anstey, K. J. (2014). Dietary mineral intake and risk of mild cognitive impairment: The PATH through life project. Frontiers in Aging Neuroscience, 6, 4.

    Article  PubMed  PubMed Central  Google Scholar 

  457. Rink, L., & Gabriel, P. (2000). Zinc and the immune system. The Proceedings of the Nutrition Society, 59(4), 541–552.

    Article  CAS  PubMed  Google Scholar 

  458. Tyszka-Czochara, M., Grzywacz, A., Gdula-Argasińska, J., Librowski, T., Wiliński, B., & Opoka, W. (2014). The role of zinc in the pathogenesis and treatment of central nervous system (CNS) diseases. Implications of zinc homeostasis for proper CNS function. Acta Poloniae Pharmaceutica, 71(3), 369–377.

    PubMed  Google Scholar 

  459. Gower-Winter, S. D., & Levenson, C. W. (2012). Zinc in the central nervous system: From molecules to behavior. BioFactors (Oxford, England), 38(3), 186–193.

    Article  CAS  Google Scholar 

  460. Frederickson, C. J., Suh, S. W., Silva, D., Frederickson, C. J., & Thompson, R. B. (2000). Importance of zinc in the central nervous system: The zinc-containing neuron. The Journal of Nutrition, 130(5S Suppl), 1471s–1483s.

    Article  CAS  PubMed  Google Scholar 

  461. Bush, A. I., Cuajungco, M. P., Atwood, C. S., Moir, R. D., Tanzi, R. E., & Bush, A. I. (2000). Alzheimer’s disease, β-amyloid protein and zinc. The Journal of Nutrition, 130(5), 1488S–1492S.

    Article  PubMed  Google Scholar 

  462. Watt, N. T., Whitehouse, I. J., & Hooper, N. M. (2010). The role of zinc in Alzheimer’s disease. International Journal of Alzheimer’s Disease, 2011, 971021.

    PubMed  PubMed Central  Google Scholar 

  463. Nuttall, J. R., & Oteiza, P. I. (2014). Zinc and the aging brain. Genes & Nutrition, 9(1), 379.

    Article  CAS  Google Scholar 

  464. Okada, Y., & Okada, M. (2013). Protective effects of plant seed extracts against amyloid β-induced neurotoxicity in cultured hippocampal neurons. Journal of Pharmacy & Bioallied Sciences, 5(2), 141–147.

    Article  Google Scholar 

  465. Ahmadian-Attari, M. M., Mosaddegh, M., Kazemnejad, A., & Noorbala, A. A. (2013). Comparison between complementary dietary treatment of Alzheimer disease in Iranian traditional medicine and modern medicine. Iranian Journal of Public Health, 42(12), 1414–1421.

    PubMed  PubMed Central  Google Scholar 

  466. Sandstead, H. H., & Freeland-Graves, J. H. (2014). Dietary phytate, zinc and hidden zinc deficiency. Journal of Trace Elements in Medicine and Biology, 28(4), 414–417.

    Article  CAS  PubMed  Google Scholar 

  467. Silber, B. Y., & Schmitt, J. A. (2010). Effects of tryptophan loading on human cognition, mood, and sleep. Neuroscience and Biobehavioral Reviews, 34(3), 387–407.

    Article  CAS  PubMed  Google Scholar 

  468. Shaw, K., Turner, J., & Del Mar, C. (2002). Tryptophan and 5-hydroxytryptophan for depression. Cochrane Database of Systematic Reviews, 1, Cd003198. https://doi.org/10.1002/14651858.CD003198

    Article  Google Scholar 

  469. Chollet, D., Franken, P., Raffin, Y., Henrotte, J. G., Widmer, J., Malafosse, A., et al. (2001). Magnesium involvement in sleep: Genetic and nutritional models. Behavior Genetics, 31(5), 413–425.

    Article  CAS  PubMed  Google Scholar 

  470. Abbasi, B., Kimiagar, M., Sadeghniiat, K., Shirazi, M. M., Hedayati, M., & Rashidkhani, B. (2012). The effect of magnesium supplementation on primary insomnia in elderly: A double-blind placebo-controlled clinical trial. Journal of Research in Medical Sciences : The Official Journal of Isfahan University of Medical Sciences, 17(12), 1161–1169.

    Google Scholar 

  471. Held, K., Antonijevic, I. A., Künzel, H., Uhr, M., Wetter, T. C., Golly, I. C., et al. (2002). Oral Mg(2+) supplementation reverses age-related neuroendocrine and sleep EEG changes in humans. Pharmacopsychiatry, 35(4), 135–143.

    Article  CAS  PubMed  Google Scholar 

  472. Hornyak, M., Haas, P., Veit, J., Gann, H., & Riemann, D. (2004). Magnesium treatment of primary alcohol-dependent patients during subacute withdrawal: An open pilot study with polysomnography. Alcoholism, Clinical and Experimental Research, 28(11), 1702–1709.

    Article  PubMed  Google Scholar 

  473. Halson, S. L. (2014). Sleep in elite athletes and nutritional interventions to enhance sleep. Sports Medicine (Auckland, N.Z.), 44(Suppl 1), S13–S23.

    Article  Google Scholar 

  474. Nieves, J. W. (2014). Bone. Maximizing bone health--magnesium, BMD and fractures. Nature Reviews. Endocrinology, 10(5), 255–256.

    Article  CAS  PubMed  Google Scholar 

  475. Lopez, H. W., Leenhardt, F., Coudray, C., & Remesy, C. (2002). Minerals and phytic acid interactions: Is it a real problem for human nutrition? International Journal of Food Science & Technology, 37(7), 727–739.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sawsan G. Mohammed or M. Walid Qoronfleh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohammed, S.G., Qoronfleh, M.W. (2020). Seeds. In: Essa, M., Qoronfleh, M. (eds) Personalized Food Intervention and Therapy for Autism Spectrum Disorder Management. Advances in Neurobiology, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-030-30402-7_13

Download citation

Publish with us

Policies and ethics