Skip to main content

Well-Partial Orderings and their Maximal Order Types

  • Chapter
  • First Online:
Well-Quasi Orders in Computation, Logic, Language and Reasoning

Part of the book series: Trends in Logic ((TREN,volume 53))

Abstract

Combinatorial theorists have for some time been showing that certain partial orderings are well-partial-orderings (w.p.o.’s). De Jongh and Parikh showed that w.p.o.’s are just those well-founded partial orderings which can be extended to a well-ordering of maximal order type; we call the ordinal thus obtained the maximal order type of the w.p.o. In this paper we calculate, in terms of a system of notations due to Schütte [24], the maximal order types of the w.p.o.’s investigated in Higman [11], and give upper bounds for the maximal order types of the w.p.o.’s investigated in Kruskal [13] and Nash-Williams [16]. As a by-product and an application of de Jongh and Parikh’s work, we give new and easier proofs of Higman’s, Kruskal’s and Nash–Williams’ theorems that the partial orderings considered are indeed w.p.o.’s. We also apply our results to the theory of ordinal notations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    But see also the note on p. 8.

  2. 2.

    Except for the very rough first attempt in Chap. II, Sect. 4 of [21].

References

  1. Bachmann, H. (1950). Die Normalfunktionen und das Problem der ausgezeichneten Folgen von Ordnungszahlen. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, 95, 5–37.

    Google Scholar 

  2. Bachmann, H. (1967). Transfinite Zahlen. Springer, VII + 228 pp.

    Google Scholar 

  3. Bridge, J. (1972). Some problems in mathematical logic. Systems of ordinal functions and ordinal notations: Thesis, Oxford University.

    Google Scholar 

  4. Bridge, J. (1975). A simplification of the Bachmann method for generating large countable ordinals. Journal Symbolic Logic, 40, 171–185.

    Article  Google Scholar 

  5. Bridge, J. (1978). A summary of the literature concerning ordinal notations. To appear.

    Google Scholar 

  6. Buchholz, W. (1975). Normalfunktionen und konstruktive Systeme von Ordinalzahlen. Proof Theory Symposion, Kiel 1974 (Springer Lecture Notes 500), 4–25.

    Google Scholar 

  7. Carruth, P. (1942). Arithmetic of ordinals with application to the theory of ordered abelian groups. Bulletin of the American Mathematical Society, 48, 262–271.

    Article  Google Scholar 

  8. Feferman, S. (1968). Systems of predicative analysis, II: Representations of ordinals. Journal Symbolic Logic, 33, 193–220.

    Article  Google Scholar 

  9. Halmos, P. (1960). Naive set theory. Van Nostrand, vii + 104 pp.

    Google Scholar 

  10. Heinzmann, G. (1976). Eine Charakterisierung der Ordinalzahl\(\Gamma _0\). Diplomarbeit: Heidelberg University.

    Google Scholar 

  11. Higman, G. (1952). Ordering by divisibility in abstract algebras. Proceedings of the London Mathematical Society, 3(2), 326–336.

    Google Scholar 

  12. Jongh, de D. H. J., & Parikh, R. (1977). Well-partial orderings and hierarchies. Indagationes Mathematicae, 39, 195–207.

    Google Scholar 

  13. Kruskal, J. B. (1960). Well-quasi-ordering, the tree theorem, and Vaszonyi’s conjecture. Transactions of the American Mathematical Society, 95, 210–225.

    Google Scholar 

  14. Kruskal, J. B. (1972). The theory of well-quasi-ordering: a frequently discovered concept. Journal Combinatorial Theory (A), 13, 297–305.

    Article  Google Scholar 

  15. Nash-Williams, C.St.J.A. (1963). On well-quasi-ordering finite trees. Mathematical Proceedings of the Cambridge Philosophical Society, 59, 833–835.

    Google Scholar 

  16. Nash-Williams, C.St.J.A. (1965). On well-quasi-ordering transfinite sequences. Mathematical Proceedings of the Cambridge Philosophical Society, 61, 33–39.

    Google Scholar 

  17. Nash-Williams, C.St.J.A. (1965a). On well-quasi-ordering infinite trees. Mathematical Proceedings of the Cambridge Philosophical Society, 61, 697–720.

    Google Scholar 

  18. Nash-Williams, C.St.J.A. (1968). On better-quasi-ordering transfinite sequences. Mathematical Proceedings of the Cambridge Philosophical Society, 64, 273–290.

    Google Scholar 

  19. Pfeiffer, H. (1970). Ein Bezeichnungssystem fur Ordinalzahlen. Archiv f. math. Logik u. Grundlagenforschung, 13, 74–90.

    Article  Google Scholar 

  20. Rado, R. (1954). Partial well-ordering of sets of vectors. Mathematika, 1, 89–95.

    Article  Google Scholar 

  21. Schmidt, D. (1972). Thesis, Oxford University.

    Google Scholar 

  22. Schmidt, D. (1975). Bounds for the closure ordinals of replete monotonic increasing functions. Journal Symbolic Logic, 40, 305–316.

    Article  Google Scholar 

  23. Schmidt, D. (1978). Associative ordinal functions, well partial orderings and a problem of Skolem. Zeitschr. f. math. Logik u. Grundl. d. Math., 24, 297–302.

    Article  Google Scholar 

  24. Schütte, K. (1954). Kennzeichnung von Ordnungszahlen durch rekursiv erklärte Funktionen. Math. Annalen, 127, 15–32.

    Article  Google Scholar 

  25. Takeuti, G. (1957). Ordinal diagrams. Journal of the Mathematical Society of Japan, 9, 386–394.

    Article  Google Scholar 

  26. Takeuti, G. (1960). Ordinal diagrams, II. Journal of the Mathematical Society of Japan, 12, 385–391.

    Article  Google Scholar 

  27. Wolk, E. S. (1967). Partially well ordered sets and partial ordinals. Fundamenta Mathematicae, 60, 175–186.

    Article  Google Scholar 

  28. Ackermann, W. (1950). Konstruktiver Aufbau eines Abschnitts der zweiten Cantorschen Zahlenklasse. Math. Zeit., 53, 403–413.

    Article  Google Scholar 

  29. Buchholz, W. (1977). Eine Erweiterung der Schnitt eliminations methode. Habilitations-schrift. München.

    Google Scholar 

  30. Buchholz, W., & Pohlers, W. (1978). Provable well orderings of formal theories for transfinitely iterated inductive definitions. Journal of Symbolic Logic, 43, 118–125.

    Article  Google Scholar 

  31. Feferman, S. (1964). Systems of predicative analysis I. Journal of Symbolic Logic, 29, 1–30.

    Article  Google Scholar 

  32. Feferman, S. (1968a). Systems of predicative analysis II: representations of ordinals. Journal of Symbolic Logic, 33, 193–220.

    Google Scholar 

  33. Feferman, S. (1968b). Lectures on proof theory. Proceedings of the Leeds Summer School, Springer Lecture Notes, 70, 1–108.

    Google Scholar 

  34. Feferman, S. (1968c). Autonomous transfinite progressions and the extent of predicative mathematics. Logic, Methodology and Philosophy of Science III, N. Holland, 121–135.

    Google Scholar 

  35. Feferman, S. (1970b). Formal theories for transfinita iterations of generalized inductive definitions and some subsystems of analysis. See [39], 303–326.

    Google Scholar 

  36. Gentzen, G. (1938). Neue Fassung des Widerspruchsfreiheitsbeweises für die reine Zahlentheorie. Forsch. zur Logik. und zur Grund. der exakten Wissenschaften New Series. Leipzig, 4, 19–44.

    Google Scholar 

  37. Gentzen, G. (1943). Beweisbarkeit und Unbeweisbarkeit von Anfangsfällen der transfiniten Induktion in der reinen Zahlentheorie. Mathematische Annalen, 119, 140–161.

    Article  Google Scholar 

  38. Gerber, H. (1967). An extension of Schütte’s Klarnmersymbols. Mathematische Annalen, 174, 203–216.

    Article  Google Scholar 

  39. Gerber, H. (1970). Brouwer’s bar theorem and a system of ordinal notations. Intuitionism and proof theory. A. Kino, J. Myhill & R. E. Vesley. N. Holland, 1970, 327–338.

    Google Scholar 

  40. Gödel, K. (1958). Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes. Dialectica. l2, 280–287.

    Google Scholar 

  41. Howard, W. (1970). Assignment of ordinals to terms for primitive recursive functionals of finite type. See [39], 443–458.

    Google Scholar 

  42. Howard, W. (1972). A system of abstract constructive ordinals. Journal of Symbolic Logic, 37, 355–374.

    Article  Google Scholar 

  43. Isles, D. (1970). Regular ordinals and normal forms. See [39], 339–362.

    Google Scholar 

  44. Kino, A. (1958). A consistency proof of a formal theory of Ackermann’s ordinal numbers. Journal of the Mathematical Society of Japan, 10, 287–303.

    Article  Google Scholar 

  45. Kino, A. (1968). On provably recursive functions and ordinal recursive functions. Journal of the Mathematical Society of Japan, 20, 456–476.

    Article  Google Scholar 

  46. Kino, A. (1970). Formalization of the theory of ordinal diagrams of infinite order. See [39], 363–376.

    Google Scholar 

  47. Kreisel, G. (1963). Generalized inductive definitions. Stanford report.

    Google Scholar 

  48. Kreisel, G. (1965). Mathematical logic. Lectures on Modern Mathematics. Ed. Saaty, Wiley, 95–195.

    Google Scholar 

  49. Martin-Löf, P. (1971). Hauptsatz for the intuitionistic theory of iterated inductive definitions. Proceedings of the 2nd. Scand. Logic Symposium. N. Holland, pp. 179–216.

    Google Scholar 

  50. Pohlers, W. (1973). Eine Grenze für die Herleitbarkeit der transfiniten Induktion in einem schwachen \(\Pi _{l}^{l}\) Fragment der Analysis. Dissertation. München.

    Google Scholar 

  51. Pohlers, W. (1975). An upper bound for the provability of transfinite induction in systems with N-times iterated inductive definitions. Proof theory symposium. Kiel 1974. Springer Lecture Notes, 500, 271–289.

    Google Scholar 

  52. Pohlers, W. (1977). Beweistheorie der iterierten Induktive Definitionen. München: Habilitationsschrift.

    Google Scholar 

  53. Pohlers, W. (1978). Ordinals connected with formal theories for transfinitely iterated inductive definitions. Journal of Symbolic Logic, 43, 161–182.

    Article  Google Scholar 

  54. Schütte, K. (1964). Eine Grenze für die Beweisbarkeit der transfiniten Induktion in der verzweigten Typenlogik. Archiv für mathematische Logik und Grundlagenforschung., 1, 45–60.

    Google Scholar 

  55. Schütte, K. (1965). Predicative well orderings. Formal systems and recursive functions. N. Holland, pp. 280–303.

    Google Scholar 

  56. Schütte, K. (1968). Ein konstruktives System von Ordinalzahlen, I, II. Archiv für mathematische Logik und Grundlagenforschung, 11, 126–137 and (12 (1969) 12–17)

    Google Scholar 

  57. Schütte, K. (1977). Proof theory. Springer.

    Google Scholar 

  58. Tait, W. (1965). Infinitely long terms of transfinite type. Formal systems and recursive functions. N. Holland, pp. 76–185.

    Google Scholar 

  59. Tait, W. (1968). Normal derivability in classical logic. The syntax and semantics of infinitary languages. Springer Lecture Notes, 72, 204–256.

    Google Scholar 

  60. Takeuti, G. (1961). On the inductive definition with quantifiers of second order. Journal of the Mathematical Society of Japan, 13, 333–341.

    Article  Google Scholar 

  61. Takeuti, G. (1967). Consistency proofs of subsystems of classical analysis. Annals of Mathematics, 86, 299–348.

    Article  Google Scholar 

  62. Takeuti, G. (1975). Proof theory. N. Holland.

    Google Scholar 

  63. Zucker, J. (1971). Proof theoretic studies of systems of iterated inductive definitions and subsystems of analysis. Dissertation. Stanford.

    Google Scholar 

Download references

Acknowledgements

I am grateful to Dick de Jongh for inviting me to Amsterdam in 1973 and introducing me to his work, and to Professor Helmut Pfeiffer for inviting me to Hannover in 1977 and putting to me a problem which led me to the results in this paper; to Professor Gert H.Müller for his active interest in my personal and mathematical welfare since 1974; and, last but by no means least, to my husband and children for their tolerance and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Schmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Diana Schmidt (2020). Well-Partial Orderings and their Maximal Order Types. In: Schuster, P., Seisenberger, M., Weiermann, A. (eds) Well-Quasi Orders in Computation, Logic, Language and Reasoning. Trends in Logic, vol 53. Springer, Cham. https://doi.org/10.1007/978-3-030-30229-0_13

Download citation

Publish with us

Policies and ethics