Skip to main content

Subject-Specific-Frequency-Band for Motor Imagery EEG Signal Recognition Based on Common Spatial Spectral Pattern

  • Conference paper
  • First Online:
PRICAI 2019: Trends in Artificial Intelligence (PRICAI 2019)

Abstract

Over the last decade, processing of biomedical signals using machine learning algorithms has gained widespread attention. Amongst these, one of the most important signals is electroencephalography (EEG) signal that is used to monitor the brain activities. Brain-computer-interface (BCI) has also become a hot topic of research where EEG signals are usually acquired using non-invasive sensors. In this work, we propose a scheme based on common spatial spectral pattern (CSSP) and optimization of temporal filters for improved motor imagery (MI) EEG signal recognition. CSSP is proposed as it improves the spatial resolution while the temporal filter is optimized for each subject as the frequency band which contains most significant information varies amongst different subjects. The proposed scheme is evaluated using two publicly available datasets: BCI competition III dataset IVa and BCI competition IV dataset 1. The proposed scheme obtained promising results and outperformed other state-of-the-art methods. The findings of this work will be beneficial for developing improved BCI systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, T., et al.: Development of a novel motor imagery control technique and application in a gaming environment. Comput. Intell. Neurosci. 2017, 16 (2017)

    Google Scholar 

  2. Yanyan, X., Xiaoou, L.: A brain controlled wheelchair based on common spatial pattern. In: International Symposium on Bioelectronics and Bioinformatics (ISBB) (2015)

    Google Scholar 

  3. Ang, K.K., et al.: A randomized controlled trial of EEG-based motor imagery brain-computer interface robotic rehabilitation for stroke. Clinincal EEG Neurosci. 46(4), 310–320 (2015)

    Article  Google Scholar 

  4. Alonso-Valerdi, L.M., Salido-Ruiz, R.A., Ramirez-Mendoza, R.A.: Motor imagery based brain–computer interfaces: an emerging technology to rehabilitate motor deficits. Neuropsychologia 79(Part B), 354–363 (2015)

    Article  Google Scholar 

  5. Ramos-Murguialday, A., et al.: Brain–machine interface in chronic stroke rehabilitation: a controlled study. Ann. Neurol. 74(1), 100–108 (2013)

    Article  Google Scholar 

  6. Ortner, R., et al.: A motor imagery based brain-computer interface for stroke rehabilitation. Stud. Health Technol. Inform. 181, 319–323 (2012)

    Google Scholar 

  7. Spezialetti, M., et al.: Towards EEG-based BCI driven by emotions for addressing BCI-Illiteracy: a meta-analytic review. Behav. Inf. Technol. 37(8), 855–871 (2018)

    Article  Google Scholar 

  8. Zheng, W.L., et al.: EEG-based emotion classification using deep belief networks. In: 2014 IEEE International Conference on Multimedia and Expo (ICME) (2014)

    Google Scholar 

  9. Jirayucharoensak, S., Pan-Ngum, S., Israsena, P.: EEG-based emotion recognition using deep learning network with principal component based covariate shift adaptation. Sci. World J. 2014, 10 (2014)

    Article  Google Scholar 

  10. Jatupaiboon, N., Pan-Ngum, S., Israsena, P.: Emotion classification using minimal EEG channels and frequency bands. In: 10th International Joint Conference on Computer Science and Software Engineering (JCSSE) (2013)

    Google Scholar 

  11. Nie, D., et al.: EEG-based emotion recognition during watching movies. In: 5th International IEEE/EMBS Conference on Neural Engineering (NER), Cancun, Mexico (2011)

    Google Scholar 

  12. Yuan-Pin, L., et al.: EEG-based emotion recognition in music listening. IEEE Trans. Biomed. Eng. 57(7), 1798–1806 (2010)

    Article  Google Scholar 

  13. Yulita, I.N., et al.: Multi-layer perceptron for sleep stage classification. J. Phys. Conf. Ser. 1028(012212) (2018)

    Google Scholar 

  14. Fonseca, P., et al.: A comparison of probabilistic classifiers for sleep stage classification. Physiol. Measur. 39(5), 055001 (2018)

    Article  Google Scholar 

  15. Chambon, S., et al.: A deep learning architecture for temporal sleep stage classification using multivariate and multimodal time series. IEEE Trans. Neural Syst. Rehabil. Eng. 26(4), 758–769 (2018)

    Article  Google Scholar 

  16. Crespo-Garcia, M., Atienza, M., Cantero, J.L.: Muscle artifact removal from human sleep EEG by using independent component analysis. Ann. Biomed. Eng. 36(6), 467–475 (2008)

    Article  Google Scholar 

  17. Zhou, M., et al.: Epileptic seizure detection based on EEG signals and CNN. Frontiers Neuroinformatics 12(95) (2018)

    Google Scholar 

  18. Li, Y., et al.: Epileptic seizure detection based on time-frequency images of EEG signals using gaussian mixture model and gray level co-occurrence matrix features. Int. J. Neural Syst. 28(07), 1850003 (2018)

    Article  Google Scholar 

  19. Baumgartner, C., Koren, J.P., Rothmayer, M.: Automatic computer-based detection of epileptic seizures. Frontiers Neurol. 9, 639 (2018)

    Article  Google Scholar 

  20. Zahra, A., et al.: Seizure detection from EEG signals using multivariate empirical mode decomposition. Comput. Biol. Med. 88, 132–141 (2017)

    Article  Google Scholar 

  21. Samiee, K., Kovcs, P., Gabbouj, M.: Epileptic seizure detection in long-term EEG records using sparse rational decomposition and local Gabor binary patterns feature extraction. Know. Based Syst. 118, 228–240 (2017)

    Article  Google Scholar 

  22. Janjarasjitt, S.: Epileptic seizure classifications of single-channel scalp EEG data using wavelet-based features and SVM. Med. Biol. Eng. Compu. 55(10), 1743–1761 (2017)

    Article  Google Scholar 

  23. Alotaiby, T.N., et al.: Epileptic seizure prediction using CSP and LDA for scalp EEG Signals. Comput. Intell. Neurosci. 2017, 1240323 (2017)

    Article  Google Scholar 

  24. Cao, L., et al.: A hybrid brain computer interface system based on the neurophysiological protocol and brain-actuated switch for wheelchair control. J. Neurosci. Methods 229, 33–43 (2014)

    Article  Google Scholar 

  25. Reshmi, G., Amal, A.: Design of a BCI system for piloting a wheelchair using five class MI based EEG. In: Third International Conference on Advances in Computing and Communications (2013)

    Google Scholar 

  26. Naveen, R.S., Julian, A.: Brain computing interface for wheel chair control. In: Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT) (2013)

    Google Scholar 

  27. Lopes, A.C., Pires, G., Nunes, U.: Assisted navigation for a brain-actuated intelligent wheelchair. Rob. Auton. Syst. 61(3), 245–258 (2013)

    Article  Google Scholar 

  28. Ang, K.K., et al.: Filter bank common spatial pattern (FBCSP) in brain-computer interface. In: IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), Hong Kong (2008)

    Google Scholar 

  29. Thomas, K.P., et al.: A new discriminative common spatial pattern method for motor imagery brain computer interfaces. IEEE Trans. Biomed. Eng. 56(11), 2730–2733 (2009)

    Article  Google Scholar 

  30. Wei, Q., Wei, Z.: Binary particle swarm optimization for frequency band selection in motor imagery based brain-computer interfaces. Bio-Med. Mater. Eng. 26(s1), S1523–S1532 (2015)

    Article  Google Scholar 

  31. Wang, J., et al.: An information fusion scheme based common spatial pattern method for classification of motor imagery tasks. Biomed. Signal Process. Control 46, 10–17 (2018)

    Article  Google Scholar 

  32. Gaur, P., et al.: A multi-class EEG-based BCI classification using multivariate empirical mode decomposition based filtering and Riemannian geometry. Expert Syst. Appl. 95(Supplement C), 201–211 (2018)

    Article  Google Scholar 

  33. Kumar, S., Sharma, A., Tsunoda, T.: An improved discriminative filter bank selection approach for motor imagery EEG signal classification using mutual information. BMC Bioinf. 18(16), 545 (2017)

    Article  Google Scholar 

  34. Kumar, S., Mamun, K., Sharma, A.: CSP-TSM: optimizing the performance of Riemannian tangent space mapping using common spatial pattern for MI-BCI. Comput. Biol. Med. 91(Supplement C), 231–242 (2017)

    Article  Google Scholar 

  35. El Bahy, M.M., Hosny, M., Mohamed, W.A., Ibrahim, S.: EEG signal classification using neural network and support vector machine in brain computer interface. In: Hassanien, A.E., Shaalan, K., Gaber, T., Azar, A.T., Tolba, M.F. (eds.) AISI 2016. AISC, vol. 533, pp. 246–256. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-48308-5_24

    Chapter  Google Scholar 

  36. Yang, B., et al.: Subject-based feature extraction by using fisher WPD-CSP in brain–computer interfaces. Comput. Methods Programs Biomed. 129, 21–28 (2016)

    Article  Google Scholar 

  37. Raza, H., et al.: Adaptive learning with covariate shift-detection for motor imagery-based brain–computer interface. Soft. Comput. 20(8), 3085–3096 (2016)

    Article  Google Scholar 

  38. Mingai, L., et al.: A novel EEG feature extraction method based on OEMD and CSP algorithm. J. Intell. Fuzzy Syst., 1–13 (2016)

    Google Scholar 

  39. Li, X., Lu, X., Wang, H.: Robust common spatial patterns with sparsity. Biomed. Signal Process. Control 26, 52–57 (2016)

    Article  Google Scholar 

  40. Kumar, S., et al.: Decimation filter with common spatial pattern and fishers discriminant analysis for motor imagery classification. In: 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, Canada (2016)

    Google Scholar 

  41. Kumar, S., et al.: A deep learning approach for motor imagery EEG signal classification. In: 3rd Asia-Pacific World Congress on Computer Science and Engineering, Denarau, Island, Fiji (2016)

    Google Scholar 

  42. Zhang, Y., et al.: Sparse bayesian learning for obtaining sparsity of EEG frequency bands based feature vectors in motor imagery classification. Int. J. Neural Syst. 27(02), 1650032 (2017)

    Article  Google Scholar 

  43. Miao, M., Wang, A., Liu, F.: A spatial-frequency-temporal optimized feature sparse representation-based classification method for motor imagery EEG pattern recognition. Med. Biol. Eng. Compu. 55(9), 1589–1603 (2017)

    Article  Google Scholar 

  44. Luo, J., et al.: Dynamic frequency feature selection based approach for classification of motor imageries. Comput. Biol. Med. 75, 45–53 (2016)

    Article  Google Scholar 

  45. Zhang, Y., et al.: Multi-kernel extreme learning machine for EEG classification in brain-computer interfaces. Expert Syst. Appl. 96, 302–310 (2018)

    Article  Google Scholar 

  46. Dong, E., et al.: Classification of multi-class motor imagery with a novel hierarchical SVM algorithm for brain–computer interfaces. Med. Biol. Eng. Compu. 55(10), 1809–1818 (2017)

    Article  Google Scholar 

  47. Zhang, Y., et al.: Sparse bayesian classification of EEG for brain computer interface. IEEE Trans. Neural Netw. Learn. Syst. 27(11), 2256–2267 (2016)

    Article  MathSciNet  Google Scholar 

  48. Ma, Y., et al.: Classification of motor imagery EEG signals with support vector machines and particle swarm optimization. Comput. Mathe. Methods Med. 2016, 8 (2016)

    MathSciNet  MATH  Google Scholar 

  49. Kumar, S., Sharma, A.: A new parameter tuning approach for enhanced motor imagery EEG signal classification. Med. Biol. Eng. Compu. 56(10), 1861–1874 (2018)

    Article  Google Scholar 

  50. Sharma, A., Paliwal, K.K.: A deterministic approach to regularized linear discriminant analysis. Neurocomputing 151(Part 1), 207–214 (2015)

    Article  Google Scholar 

  51. Sharma, A., et al.: Principal component analysis using QR decomposition. Int. J. Mach. Learn. Cybernet. 4(6), 679–683 (2013)

    Article  Google Scholar 

  52. Paliwal, K.K., Sharma, A.: Improved direct LDA and its application to DNA microarray gene expression data. Pattern Recogn. Lett. 31(16), 2489–2492 (2010)

    Article  Google Scholar 

  53. Sharma, A., Paliwal, K.K.: Fast principal component analysis using fixed-point algorithm. Pattern Recogn. Lett. 28(10), 1151–1155 (2007)

    Article  Google Scholar 

  54. Sharma, A., Paliwal, K.K.: A gradient linear discriminant analysis for small sample sized problem. Neural Process. Lett. 27(1), 17–24 (2008)

    Article  Google Scholar 

  55. Sharma, A., et al.: A feature selection method using improved regularized linear discriminant analysis. Mach. Vis. Appl. 25(3), 775–786 (2014)

    Article  Google Scholar 

  56. Sharma, A., et al.: Null space based feature selection method for gene expression data. Int. J. Mach. Learn. Cybernet. 3(4), 269–276 (2012)

    Article  Google Scholar 

  57. Sharma, A., Kamola, P.J., Tsunoda, T.: 2D–EM clustering approach for high-dimensional data through folding feature vectors. BMC Bioinform. 18(16), 547 (2017)

    Article  Google Scholar 

  58. Sharma, A., et al.: Hierarchical maximum likelihood clustering approach. IEEE Trans. Biomed. Eng. 64(1), 112–122 (2017)

    Article  Google Scholar 

  59. Saini, H., et al.: Protein fold recognition using genetic algorithm optimized voting scheme and profile bigram. J. Softw. 11(8), 756–767 (2016)

    Article  Google Scholar 

  60. Sharma, A., Paliwal, K.K., Onwubolu, G.C.: Class-dependent PCA, MDC and LDA: a combined classifier for pattern classification. Pattern Recogn. 39(7), 1215–1229 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shiu Kumar or Alok Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, S., Sharma, A., Tsunoda, T. (2019). Subject-Specific-Frequency-Band for Motor Imagery EEG Signal Recognition Based on Common Spatial Spectral Pattern. In: Nayak, A., Sharma, A. (eds) PRICAI 2019: Trends in Artificial Intelligence. PRICAI 2019. Lecture Notes in Computer Science(), vol 11671. Springer, Cham. https://doi.org/10.1007/978-3-030-29911-8_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29911-8_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29910-1

  • Online ISBN: 978-3-030-29911-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics