Skip to main content

Sparsity Constraint Nonnegative Tensor Factorization for Mobility Pattern Mining

  • Conference paper
  • First Online:
PRICAI 2019: Trends in Artificial Intelligence (PRICAI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11671))

Included in the following conference series:

Abstract

Despite the capability of modeling multi-dimensional (such as spatio-temporal) data, tensor modeling and factorization methods such as Nonnegative Tensor Factorization (NTF) is in infancy for automatically learning mobility patterns of people. The quality of patterns generated by these methods gets affected by the sparsity of the data. This paper introduces a Sparsity constraint Nonnegative Tensor Factorization (SNTF) method and studies how to effectively generate mobility patterns from the Location Based Social Networks (LBSNs) usage data. The factorization process is optimized using the element selection based factorization algorithm, Greedy Coordinate Descent algorithm. Empirical analysis with real-world datasets shows the significance of SNTF in automatically learning accurate mobility patterns. We empirically show that the sparsity constraint in NTF improves the accuracy of patterns for highly sparse datasets and is able to identify distinctive patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acar, E., Dunlavy, D.M., Kolda, T.G., Mørup, M.: Scalable tensor factorizations for incomplete data. Chemometr. Intell. Lab. Syst. 106(1), 41–56 (2011)

    Article  Google Scholar 

  2. Afshar, A., et al.: CP-ORTHO: an orthogonal tensor factorization framework for spatio-temporal data. In: SIGSPATIAL International Conference on Advances in Geographic Information Systems, p. 67. ACM (2017)

    Google Scholar 

  3. Balasubramaniam, T., Nayak, R., Yuen, C.: Understanding urban spatio-temporal usage patterns using matrix tensor factorization. In: IEEE International Conference on Data Mining Workshops, pp. 1497–1498 (2018)

    Google Scholar 

  4. Balasubramaniam, T., Nayak, R., Yuen, C.: Nonnegative coupled matrix tensor factorization for smart city spatiotemporal pattern mining. In: Nicosia, G., Pardalos, P., Giuffrida, G., Umeton, R., Sciacca, V. (eds.) Machine Learning, Optimization, and Data Science, pp. 520–532. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-13709-0_44

    Chapter  Google Scholar 

  5. Bao, J., Zheng, Y., Wilkie, D., Mokbel, M.: Recommendations in location-based social networks: a survey. GeoInformatica 19(3), 525–565 (2015)

    Article  Google Scholar 

  6. Chourabi, H., et al.: Understanding smart cities: an integrative framework. In: Hawaii International Conference on System Sciences, pp. 2289–2297. IEEE (2012)

    Google Scholar 

  7. Du, L., Li, X., Shen, Y.D.: Robust nonnegative matrix factorization via half-quadratic minimization. In: ICDM, pp. 201–210. IEEE (2012)

    Google Scholar 

  8. Fan, Z., Song, X., Shibasaki, R.: CitySpectrum: a non-negative tensor factorization approach. In: International Joint Conference on Pervasive and Ubiquitous Computing, pp. 213–223. ACM (2014)

    Google Scholar 

  9. Han, Y., Moutarde, F.: Analysis of large-scale traffic dynamics in an urban transportation network using non-negative tensor factorization. Int. J. Intell. Transp. Syst. Res. 14(1), 36–49 (2016)

    Google Scholar 

  10. Harrison, C., et al.: Foundations for smarter cities. IBM J. Res. Dev. 54(4), 1–16 (2010)

    Article  Google Scholar 

  11. Hoyer, P.O.: Non-negative matrix factorization with sparseness constraints. J. Mach. Learn. Res. 5(Nov), 1457–1469 (2004)

    MathSciNet  MATH  Google Scholar 

  12. Hsieh, C.J., Dhillon, I.S.: Fast coordinate descent methods with variable selection for non-negative matrix factorization. In: SIGKDD, pp. 1064–1072. ACM (2011)

    Google Scholar 

  13. Kimura, T., et al.: Spatio-temporal factorization of log data for understanding network events. In: INFOCOM, pp. 610–618. IEEE (2014)

    Google Scholar 

  14. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455–500 (2009)

    Article  MathSciNet  Google Scholar 

  15. Kruskal, J.B.: Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. Linear Algebra Appl. 18(2), 95–138 (1977)

    Article  MathSciNet  Google Scholar 

  16. Lau, B.P.L., et al.: Extracting point of interest and classifying environment for low sampling crowd sensing smartphone sensor data. In: PerCom Workshops, pp. 201–206. IEEE (2017)

    Google Scholar 

  17. Luo, P., Peng, J., Fan, J.: l2, 1 norm and hessian regularized non-negative matrix factorization with discriminability for data representation. Appl. Sci. 7(10), 1013 (2017)

    Article  Google Scholar 

  18. Maaten, L.V.D., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(Nov), 2579–2605 (2008)

    MATH  Google Scholar 

  19. Marakkalage, S.H., et al.: Understanding the lifestyle of older population: mobile crowdsensing approach. IEEE TCSS (2018)

    Google Scholar 

  20. Sun, L., Axhausen, K.W.: Understanding urban mobility patterns with a probabilistic tensor factorization framework. Transp. Res. Part B Methodol. 91, 511–524 (2016)

    Article  Google Scholar 

  21. Takane, Y., Young, F.W., De Leeuw, J.: Nonmetric individual differences multidimensional scaling: an alternating least squares method with optimal scaling features. Psychometrika 42(1), 7–67 (1977)

    Article  Google Scholar 

  22. Zheng, Y., Liu, T., Wang, Y., Zhu, Y., Liu, Y., Chang, E.: Diagnosing New York city’s noises with ubiquitous data. In: UbiComp, pp. 715–725. ACM (2014)

    Google Scholar 

  23. Zou, H., Yuan, M.: The f\(\infty \)-norm support vector machine. Statistica Sinica, 379–398 (2008)

    Google Scholar 

Download references

Acknowledgments

This research was partly supported by the Lee Kuan Yew Centre for Innovative Cities under Lee Li Ming Programme in Aging Urbanism.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thirunavukarasu Balasubramaniam or Richi Nayak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Balasubramaniam, T., Nayak, R., Yuen, C. (2019). Sparsity Constraint Nonnegative Tensor Factorization for Mobility Pattern Mining. In: Nayak, A., Sharma, A. (eds) PRICAI 2019: Trends in Artificial Intelligence. PRICAI 2019. Lecture Notes in Computer Science(), vol 11671. Springer, Cham. https://doi.org/10.1007/978-3-030-29911-8_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29911-8_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29910-1

  • Online ISBN: 978-3-030-29911-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics