Skip to main content

CD-ABM: Curriculum Design with Attention Branch Model for Person Re-identification

  • Conference paper
  • First Online:
PRICAI 2019: Trends in Artificial Intelligence (PRICAI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11672))

Included in the following conference series:

  • 2728 Accesses

Abstract

Person re-identification (re-ID) is a challenging problem due to background clutter, illumination and pose variation, occlusion, and pedestrian misalignment. Current state-of-the-art methods commonly extract discriminative information by deep networks based on one-stage training. Though straightforward, using one-stage learning, the presence of pedestrian misalignment in practical applications may significantly degrade the performance of the learned model. To address this issue, we propose a novel model for person re-ID, called CD-ABM. It adopts a curriculum design to proceed training from easy to hard samples and generates an attention map in a supervised manner to further facilitate discriminative feature extraction. Compared with existing methods, CD-ABM has the following advantages: (1) The curriculum design can gradually improve the model capability through progressive learning. (2) The attention map enables the local branch to be associated with the global branch and better exploits both local and global information. Experiments on three benchmark datasets show that, CD-ABM can achieve competitive performance with the state-of-the-arts. Noteworthily, on the most challenging dataset MSMT17, it surpasses state-of-the-art methods by 15.9% in Rank-1 and 21.0% in mAP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed, E., Jones, M., Marks, T.K.: An improved deep learning architecture for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3908–3916 (2015)

    Google Scholar 

  2. Almazan, J., Gajic, B., Murray, N., Larlus, D.: Re-id done right: towards good practices for person re-identification. arXiv preprint arXiv:1801.05339 (2018)

  3. Bai, X., Yang, M., Huang, T., Dou, Z., Yu, R., Xu, Y.: Deep-person: learning discriminative deep features for person re-identification. arXiv preprint arXiv:1711.10658 (2017)

  4. Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 41–48. ACM (2009)

    Google Scholar 

  5. Cheng, D., Gong, Y., Zhou, S., Wang, J., Zheng, N.: Person re-identification by multi-channel parts-based CNN with improved triplet loss function. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1335–1344 (2016)

    Google Scholar 

  6. Fan, H., Zheng, L., Yan, C., Yang, Y.: Unsupervised person re-identification: clustering and fine-tuning. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 14(4), 83 (2018)

    Google Scholar 

  7. Fukui, H., Hirakawa, T., Yamashita, T., Fujiyoshi, H.: Attention branch network: learning of attention mechanism for visual explanation. arXiv preprint arXiv:1812.10025 (2018)

  8. Guo, S., et al.: CurriculumNet: weakly supervised learning from large-scale web images. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 139–154. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_9

    Chapter  Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  10. Li, W., Zhu, X., Gong, S.: Harmonious attention network for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2285–2294 (2018)

    Google Scholar 

  11. Lin, Y., Zheng, L., Zheng, Z., Wu, Y., Yang, Y.: Improving person re-identification by attribute and identity learning. arXiv preprint arXiv:1703.07220 (2017)

  12. Liu, X., et al.: HydraPlus-Net: attentive deep features for pedestrian analysis. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 350–359 (2017)

    Google Scholar 

  13. Saquib Sarfraz, M., Schumann, A., Eberle, A., Stiefelhagen, R.: A pose-sensitive embedding for person re-identification with expanded cross neighborhood re-ranking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 420–429 (2018)

    Google Scholar 

  14. Song, C., Huang, Y., Ouyang, W., Wang, L.: Mask-guided contrastive attention model for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1179–1188 (2018)

    Google Scholar 

  15. Su, C., Li, J., Zhang, S., Xing, J., Gao, W., Tian, Q.: Pose-driven deep convolutional model for person re-identification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3960–3969 (2017)

    Google Scholar 

  16. Su, C., Yang, F., Zhang, S., Tian, Q., Davis, L.S., Gao, W.: Multi-task learning with low rank attribute embedding for multi-camera person re-identification. IEEE Trans. Pattern Anal. Mach. Intell. 40(5), 1167–1181 (2018)

    Article  Google Scholar 

  17. Suh, Y., Wang, J., Tang, S., Mei, T., Lee, K.M.: Part-aligned bilinear representations for person re-identification. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 418–437. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_25

    Chapter  Google Scholar 

  18. Sun, Y., Zheng, L., Deng, W., Wang, S.: SVDNet for pedestrian retrieval. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3800–3808 (2017)

    Google Scholar 

  19. Sun, Y., Zheng, L., Yang, Y., Tian, Q., Wang, S.: Beyond part models: person retrieval with refined part pooling (and a strong convolutional baseline). In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 501–518. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_30

    Chapter  Google Scholar 

  20. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  21. Tian, M., et al.: Eliminating background-bias for robust person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5794–5803 (2018)

    Google Scholar 

  22. Wei, L., Zhang, S., Gao, W., Tian, Q.: Person transfer GAN to bridge domain gap for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 79–88 (2018)

    Google Scholar 

  23. Wei, L., Zhang, S., Yao, H., Gao, W., Tian, Q.: Glad: global-local-alignment descriptor for pedestrian retrieval. In: Proceedings of the 25th ACM International Conference on Multimedia, pp. 420–428. ACM (2017)

    Google Scholar 

  24. Wen, F., Chu, L., Liu, P., Qiu, R.C.: A survey on nonconvex regularization-based sparse and low-rank recovery in signal processing, statistics, and machine learning. IEEE Access 6, 69883–69906 (2018)

    Article  Google Scholar 

  25. Wu, Y., Lin, Y., Dong, X., Yan, Y., Bian, W., Yang, Y.: Progressive learning for person re-identification with one example. IEEE Trans. Image Process. 28, 2872–2881 (2019)

    Article  MathSciNet  Google Scholar 

  26. Xiao, T., Li, H., Ouyang, W., Wang, X.: Learning deep feature representations with domain guided dropout for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1249–1258 (2016)

    Google Scholar 

  27. Xu, J., Zhao, R., Zhu, F., Wang, H., Ouyang, W.: Attention-aware compositional network for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2119–2128 (2018)

    Google Scholar 

  28. Yan, Y., Ni, B., Liu, J., Yang, X.: Multi-level attention model for person re-identification. Pattern Recognit. Lett. (2018, in press)

    Google Scholar 

  29. Zhao, H., et al.: Spindle net: person re-identification with human body region guided feature decomposition and fusion. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1077–1085 (2017)

    Google Scholar 

  30. Zhao, L., Li, X., Zhuang, Y., Wang, J.: Deeply-learned part-aligned representations for person re-identification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3219–3228 (2017)

    Google Scholar 

  31. Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., Tian, Q.: Scalable person re-identification: a benchmark. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1116–1124 (2015)

    Google Scholar 

  32. Zheng, L., Yang, Y., Hauptmann, A.G.: Person re-identification: past, present and future. arXiv preprint arXiv:1610.02984 (2016)

  33. Zheng, Z., Zheng, L., Yang, Y.: Unlabeled samples generated by GAN improve the person re-identification baseline in vitro. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3754–3762 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiuchao Qian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, J., Qian, J., Zhu, X., Wen, F., Hong, Y., Liu, P. (2019). CD-ABM: Curriculum Design with Attention Branch Model for Person Re-identification. In: Nayak, A., Sharma, A. (eds) PRICAI 2019: Trends in Artificial Intelligence. PRICAI 2019. Lecture Notes in Computer Science(), vol 11672. Springer, Cham. https://doi.org/10.1007/978-3-030-29894-4_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29894-4_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29893-7

  • Online ISBN: 978-3-030-29894-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics