Skip to main content

The Bladder, the Rectum and the Sphincters: Neural Pathways and Peripheral Control

  • Chapter
  • First Online:
Suprapontine Lesions and Neurogenic Pelvic Dysfunctions

Abstract

Until the 1980s, the knowledge concerning the relationships between the bladder and intestinal functions and brain control was scarce and the same was as regards the control of the voluntary control of pelvic floor muscles. Functional imaging studies have allowed us to highlight the relationship between function and brain activity, but the complex relationships that govern micturition and defecation are still to be fully clarified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barrington F. The effect of lesions of the hind- and mid-brain on micturition in the cat. Q J Exp Physiol. 1925;15:81–102.

    Article  Google Scholar 

  2. Kuru M. Nervous control of micturition. Physiol Rev. 1965;45:425–94.

    Article  CAS  PubMed  Google Scholar 

  3. de Groat WC, Booth AM, Yoshimura N. Neurophysiology of micturition and its modification in animal models of human disease. In: Maggi CA, editor. The autonomic nervous system. London: Harwood Academic Publishers; 1993. p. 227–89.

    Google Scholar 

  4. Fowler CJ, Griffiths D, de Groat WC. The neural control of micturition. Nat Rev Neurosci. 2008;9:453–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Birder L, Blok B, Burnstock G, et al. Committee 3: Neural Control. In: Abrams P, Cardozo L, Wagg A, Wein A, editors. Incontinence. 6th International Consultation on Incontinence, Tokyo 2016. Paris: ICUD-ICS; 2017.

    Google Scholar 

  6. Fry CH, Kanai AJ, Roosen A, et al. Cell biology. In: Abrams P, Cardozo L, Khoury S, Wein A, editors. Incontinence, vol. 4. Paris, France: Health Publications, Ltd; 2009. p. 113–66.

    Google Scholar 

  7. de Groat WC, Wickens C. Organization of the neural switching circuitry underlying reflex micturition. Acta Physiol (Oxf). 2013;207(1):66–84.

    Article  CAS  Google Scholar 

  8. Arya NG, Weissbart SJ. Central control of micturition in women: brain-bladder pathways in continence and urgency urinary incontinence. Clin Anat. 2017;30(3):373–84.

    Article  PubMed  Google Scholar 

  9. Critchley HD, Mathias CJ, Josephs O, et al. Human cingulate cortex and autonomic control: converging neuroimaging and clinical evidence. Brain. 2003;126:2139–52.

    Article  PubMed  Google Scholar 

  10. Mayer EA, Naliboff BD, Craig AD. Neuroimaging of the brain-gut axis: from basic understanding to treatment of functional GI disorders. Gastroenterology. 2006;131:1925–42.

    Article  PubMed  Google Scholar 

  11. Lane RD, Wager TD. The new field of brain-body medicine: what have we learned and where are we headed? NeuroImage. 2009;47:1135–40.

    Article  PubMed  Google Scholar 

  12. Fowler CJ, Griffiths DJ. A decade of functional brain imaging applied to bladder control. Neurourol Urodyn. 2010;29:49–55.

    PubMed  Google Scholar 

  13. Haylen BT, de Ridder D, Freeman RM, et al. An International Urogynecological Association (IUGA)/International Continence Society (ICS) joint report on the terminology for female pelvic floor dysfunction. Int Urogynecol J. 2010;21:5–26.

    Article  PubMed  Google Scholar 

  14. Fowler CJ. Integrated control of lower urinary tract—clinical perspective. Br J Pharmacol. 2006;147(Suppl 2):S14–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Griffiths D. Neural control of micturition in humans: a working model. Nat Rev Urol. 2015;12(12):695–705.

    Article  CAS  PubMed  Google Scholar 

  16. Janig W, Morrison JF. Functional properties of spinal visceral afferents supplying abdominal and pelvic organs, with special emphasis on visceral nociception. Prog Brain Res. 1986;67:87–114.

    Article  CAS  PubMed  Google Scholar 

  17. de Groat WC, Yoshimura N. Afferent nerve regulation of bladder function in health and disease. Handb Exp Pharmacol. 2009;194:91–138.

    Article  CAS  Google Scholar 

  18. Gosling JA, Dixon JS. Sensory nerves in the mammalian urinary tract. An evaluation using light and electron microscopy. J Anat. 1974;117:133–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Gabella G. The structural relations between nerve fibres and muscle cells in the urinary bladder of the rat. J Neurocytol. 1995;24:159–71.

    Article  CAS  PubMed  Google Scholar 

  20. Gabella G, Davis C. Distribution of afferent axons in the bladders of rats. J Neurocytol. 1998;27:141–55.

    Article  CAS  PubMed  Google Scholar 

  21. Birder LA. Vanilloid receptor expression suggests a sensory role for urinary bladder epithelial cells. Proc Natl Acad Sci U S A. 2001;98:13396–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Birder L. Role of the urothelium in bladder function. Scand J Urol Nephrol Suppl. 2004;215:48–53.

    Article  Google Scholar 

  23. Wiseman OJ. The ultrastructure of bladder lamina propria nerves in healthy subjects and patients with detrusor hyperreflexia. J Urol. 2002;168:2040–5.

    Article  PubMed  Google Scholar 

  24. Sengupta JN, Gebhart GF. Mechanosensitive properties of pelvic nerve afferent fibers innervating the urinary bladder of the rat. J Neurophysiol. 1994;72:2420–30.

    Article  CAS  PubMed  Google Scholar 

  25. Shea VK, Cai R, Crepps B, et al. Sensory fibers of the pelvic nerve innervating the Rat’s urinary bladder. J Neurophysiol. 2000;84:1924–33.

    Article  CAS  PubMed  Google Scholar 

  26. Kanai A, Wyndaele JJ, Andersson KE, et al. Researching bladder afferents-determining the effects of beta(3)-adrenergic receptor agonists and botulinum toxin type-A. Neurourol Urodyn. 2011;30:684–91.

    Article  CAS  PubMed  Google Scholar 

  27. Habler HJ, Janig W, Koltzenburg M. Receptive properties of myelinated primary afferents innervating the inflamed urinary bladder of the cat. J Neurophysiol. 1993;69:395–405.

    Article  CAS  PubMed  Google Scholar 

  28. Gillespie JI, van Koeveringe GA, de Wachter SG, de Vente J. On the origins of the sensory output from the bladder: the concept of afferent noise. BJU Int. 2009;103:1324–33.

    Article  PubMed  Google Scholar 

  29. Habler HJ, Janig W, Koltzenburg M. Activation of unmyelinated afferent fibres by mechanical stimuli and inflammation of the urinary bladder in the cat. J Physiol. 1990;425:545–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fall M, Lindström S, Mazieres L. A bladder-to-bladder cooling reflex in the cat. J Physiol. 1990;427:281–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. de Groat WC, Lalley PM. Reflex firing in the lumbar sympathetic outflow to activation of vesical afferent fibres. J Physiol. 1972;226:289–309.

    Article  PubMed  PubMed Central  Google Scholar 

  32. de Groat WC, Theobald RJ. Reflex activation of sympathetic pathways to vesical smooth muscle and parasympathetic ganglia by electrical stimulation of vesical afferents. J Physiol. 1976;259:223–37.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Thor KB, de Groat WC. Neural control of the female urethral and anal rhabdosphincters and pelvic floor muscles. Am J Physiol Regul Integr Comp Physiol. 2010;299:R416–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Holstege G. Micturition and the soul. J Comp Neurol. 2005;493:15–20.

    Article  PubMed  Google Scholar 

  35. Klop EM, Mouton LJ, Kuipers R, et al. Neurons in the lateral sacral cord of the cat project to periaqueductal grey, but not to thalamus. Eur J Neurosci. 2005;21:2159–66.

    Article  PubMed  Google Scholar 

  36. Beckel JM, Holstege G. Neurophysiology of the lower urinary tract. Handb Exp Pharmacol. 2011;8:149–69.

    Article  CAS  Google Scholar 

  37. Holstege G. The emotional motor system and micturition control. Neurourol Urodyn. 2010;29:42–8.

    Article  PubMed  Google Scholar 

  38. Morgan C, Nadelhaft I, de Groat WC. The distribution of visceral primary afferents from the pelvic nerve to Lissauer’s tract and the spinal gray matter and its relationship to the sacral parasympathetic nucleus. J Comp Neurol. 1981;201:415–40.

    Article  CAS  PubMed  Google Scholar 

  39. Steers WD, Ciambotti J, Etzel B, et al. Alterations in afferent pathways from the urinary bladder of the rat in response to partial urethral obstruction. J Comp Neurol. 1991;310:401–10.

    Article  CAS  PubMed  Google Scholar 

  40. Van der Horst V, Mouton L, Blok B, et al. Somatotopical organization of input from the lumbosacral cord to the periaqueductal gray in the cat; possible implications for aggressive and defensive behavior, micturition, and lordosis. J Comp Neurol. 1996;376:361–85.

    Article  Google Scholar 

  41. Blok B, Holstege G. The pontine micturition center in rat receives direct lumbosacral input. An ultrastructural study. Neurosci Lett. 2000;282:29–32.

    Article  CAS  PubMed  Google Scholar 

  42. de Groat WC, Araki I, Vizzard MA, et al. Developmental and injury induced plasticity in the micturition reflex pathway. Behav Brain Res. 1998;92:127–40.

    Article  PubMed  Google Scholar 

  43. McMahon SB, Morrison JF. Spinal neurones with long projections activated from the abdominal viscera of the cat. J Physiol. 1982;322:1–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ding YQ, Zheng HX, Gong LW, et al. Direct projections from the lumbosacral spinal cord to Barrington’s nucleus in the rat: a special reference to micturition reflex. J Comp Neurol. 1997;389:149–60.

    Article  CAS  PubMed  Google Scholar 

  45. Holstege G, Mouton LJ. Central nervous system control of micturition. Int Rev Neurobiol. 2003;56:123–45.

    Article  PubMed  Google Scholar 

  46. Birder LA, Roppolo JR, Erickson VL, et al. Increased c-fos expression in spinal lumbosacral projection neurons and preganglionic neurons after irritation of the lower urinary tract in the rat. Brain Res. 1999;834:55–65.

    Article  CAS  PubMed  Google Scholar 

  47. Thor KB, Morgan C, Nadelhaft I, et al. Organization of afferent and efferent pathways in the pudendal nerve of the female cat. J Comp Neurol. 1989;288:263–79.

    Article  CAS  PubMed  Google Scholar 

  48. Araki I, de Groat WC. Unitary excitatory synaptic currents in preganglionic neurons mediated by two distinct groups of interneurons in neonatal rat sacral parasympathetic nucleus. J Neurophysiol. 1996;76:215–26.

    Article  CAS  PubMed  Google Scholar 

  49. Araki I, de Groat WC. Developmental synaptic depression underlying reorganization of visceral reflex pathways in the spinal cord. J Neurosci. 1997;17:8402–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Miura A, Kawatani M, de Groat WC. Excitatory synaptic currents in lumbosacral parasympathetic preganglionic neurons evoked by stimulation of the dorsal commissure. J Neurophysiol. 2003;89:382–9.

    Article  PubMed  Google Scholar 

  51. Morgan CW, de Groat WC, Felkins LA, et al. Intracellular injection of neurobiotin or horseradish peroxidase reveals separate types of preganglionic neurons in the sacral parasympathetic nucleus of the cat. J Comp Neurol. 1993;331:161–82.

    Article  CAS  PubMed  Google Scholar 

  52. Nadelhaft I, Vera PL, Card JP, et al. Central nervous system neurons labelled following the injection of pseudorabies virus into the rat urinary bladder. Neurosci Lett. 1992;143:271–4.

    Article  CAS  PubMed  Google Scholar 

  53. Nadelhaft I, Vera PL. Central nervous system neurons infected by pseudorabies virus injected into the rat urinary bladder following unilateral transection of the pelvic nerve. J Comp Neurol. 1995;359:443–56.

    Article  CAS  PubMed  Google Scholar 

  54. Nadelhaft I, Vera PL. Neurons in the rat brain and spinal cord labeled after pseudorabies virus injected into the external urethral sphincter. J Comp Neurol. 1996;375:502–17.

    Article  CAS  PubMed  Google Scholar 

  55. Nadelhaft I, Vera PL. Separate urinary bladder and external urethral sphincter neurons in the central nervous system of the rat: simultaneous labeling with two immunohistochemically distinguishable pseudorabies viruses. Brain Res. 2001;903:33–44.

    Article  CAS  PubMed  Google Scholar 

  56. Vizzard MA, Erickson VL, Card JP, et al. Transneuronal labeling of neurons in the adult rat brainstem and spinal cord after injection of pseudorabies virus into the urethra. J Comp Neurol. 1995;355:629–40.

    Article  CAS  PubMed  Google Scholar 

  57. Sugaya K, Roppolo JR, Yoshimura N, et al. The central neural pathways involved in micturition in the neonatal rat as revealed by the injection of pseudorabies virus into the urinary bladder. Neurosci Lett. 1997;223:197–200.

    Article  CAS  PubMed  Google Scholar 

  58. Marson L. Identification of central nervous system neurons that innervate the bladder body, bladder base, or external urethral sphincter of female rats: a transneuronal tracing study using pseudorabies virus. J Comp Neurol. 1997;389:584–602.

    Article  CAS  PubMed  Google Scholar 

  59. de Groat WC. Neural control of the urethra. Scand J Urol Nephrol. 2001;35(Suppl. 207):35–43.

    Google Scholar 

  60. De Groat WC, Ryall RW. Recurrent inhibition in sacral parasympathetic pathways to the bladder. J Physiol. 1968;196(3):579–91.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Athwal BS, Berkley KJ, Hussain I, et al. Brain responses to changes in bladder volume and urge to void in healthy men. Brain. 2001;124:369–77.

    Article  CAS  PubMed  Google Scholar 

  62. Griffiths D, Derbyshire S, Stenger A, et al. Brain control of normal and overactive bladder. J Urol. 2005;174:1862–7.

    Article  PubMed  Google Scholar 

  63. Kavia RB, Dasgupta R, Fowler CJ. Functional imaging and the central control of the bladder. J Comp Neurol. 2005;493:27–32.

    Article  PubMed  Google Scholar 

  64. Griffiths D, Tadic S. Bladder control, urgency, and urge incontinence: evidence from functional brain imaging. Neurourol Urodyn. 2008;27:466–74.

    Article  PubMed  Google Scholar 

  65. Willis WD, Al-Chaer ED, Quast MJ, et al. A visceral pain pathway in the dorsal column of the spinal cord. Proc Natl Acad Sci U S A. 1999;96:7675–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chapple CR, Yamanishi T, Chess-Williams R. Muscarinic receptor subtypes and management of the overactive bladder. Urology. 2002;60:82–8.

    Article  PubMed  Google Scholar 

  67. de Groat WC, Yoshimura N. Pharmacology of the lower urinary tract. Annu Rev Pharmacol Toxicol. 2001;41:691–721.

    Article  PubMed  Google Scholar 

  68. Park JM, Bloom DA, McGuire EJ. The guarding reflex revisited. Br J Urol. 1997;80:940–5.

    Article  CAS  PubMed  Google Scholar 

  69. de Groat WC. Mechanisms underlying the recovery of lower urinary tract function following spinal cord injury. Paraplegia. 1995;33:493–505.

    PubMed  Google Scholar 

  70. de Groat WC, Vizzard MA, Araki I, et al. Spinal interneurons and preganglionic neurons in sacral autonomic reflex pathways. Prog Brain Res. 1996;107:97–111.

    Article  Google Scholar 

  71. de Groat WC. Integrative control of the lower urinary tract: preclinical perspective. Br J Pharmacol. 2006;147(Suppl. 2):S25–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Cockayne DA. Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X3-deficient mice. Nature. 2000;407:1011–5.

    Article  CAS  PubMed  Google Scholar 

  73. Blok BF, Sturms LM, Holstege G. A PET study on cortical and subcortical control of pelvic floor musculature in women. J Comp Neurol. 1997;389:535–44.

    Article  CAS  PubMed  Google Scholar 

  74. Zhang H, Reitz A, Kollias S, et al. An fMRI study of the role of suprapontine brain structures in the voluntary voiding control induced by pelvic floor contraction. NeuroImage. 2005;24:174–80.

    Article  PubMed  Google Scholar 

  75. Seseke S, Baudewig J, Kallenberg K, et al. Voluntary pelvic floor muscle control—an fMRI study. NeuroImage. 2006;31:1399–407.

    Article  CAS  PubMed  Google Scholar 

  76. Kuhtz-Buschbeck JP, Van der Horst C, Wolff S, et al. Activation of the supplementary motor area (SMA) during voluntary pelvic floor muscle contractions-an fMRI study. NeuroImage. 2007;35:449–57.

    Article  CAS  PubMed  Google Scholar 

  77. Schrum A, Wolff S, Van der Horst C, et al. Motor cortical representation of the pelvic floor muscles. J Urol. 2011;186:185–90.

    Article  CAS  PubMed  Google Scholar 

  78. Holstege G, Griffiths D, De Wall H, et al. Anatomical and physiological observations on supraspinal control of bladder and urethral sphincter muscles in the cat. J Comp Neurol. 1986;250:449–61.

    Article  CAS  PubMed  Google Scholar 

  79. Griffiths DJ. The pontine micturition centres. Scand J Urol Nephrol. 2002;36(Suppl. 210):21–6.

    Article  Google Scholar 

  80. de Groat WC, Yoshimura N. Anatomy and physiology of the lower urinary tract. Handb Clin Neurol. 2015;130:61–108.

    Article  PubMed  Google Scholar 

  81. Kitta T, Mitsui T, Kanno Y, et al. Brain-bladder control network: the unsolved 21st century urological mystery. Int J Urol. 2015;22:342–8.

    Article  PubMed  Google Scholar 

  82. de Groat WC, Griffiths D, Yoshimura N. Neural control of the lower urinary tract. Compr Physiol. 2015;5:327–96.

    PubMed  PubMed Central  Google Scholar 

  83. Michels L, Blok BF, Gregorini F, et al. Supraspinal control of urine storage and micturition in men-an fMRI Study. Cereb Cortex. 2015;25:3369–80.

    Article  PubMed  Google Scholar 

  84. Sugaya K, Nishijima S, Miyazato M, et al. Inhibitory effect of the nucleus reticularis pontis oralis on the pontine micturition center and pontine urine storage center in decerebrate cats. Biomed Res. 2006;27:211–7.

    Article  CAS  PubMed  Google Scholar 

  85. Sakakibara R, Fowler CJ, Hattori T. Voiding and MRI analysis of the brain. Int Urogynecol J Pelvic Floor Dysfunct. 1999;10:192–9.

    Article  CAS  PubMed  Google Scholar 

  86. Blok BF, Holstege G. Two pontine micturition centers in the cat are not interconnected directly: implications for the central organization of micturition. J Comp Neurol. 1999;403:209–18.

    Article  CAS  PubMed  Google Scholar 

  87. Blok BF, Holstege G. The central nervous system control of micturition in cats and humans. Behav Brain Res. 1998;92:119–25.

    Article  CAS  PubMed  Google Scholar 

  88. de Groat WC. Nervous control of the urinary bladder of the cat. Brain Res. 1975;87:201–11.

    Article  PubMed  Google Scholar 

  89. Koyama Y, Ozaki H. KuruM. Interference between the pontine detrusor nucleus and the pontine urine-storage nucleus. An electromyographical study of the external urethral sphincter. Jpn J Physiol. 1966;16:291–303.

    Article  CAS  PubMed  Google Scholar 

  90. McGuire E, Morrissey S, Zhang S, et al. Control of reflex detrusor activity in normal and spinal injured nonhuman primates. J Urol. 1983;129:197–9.

    Article  CAS  PubMed  Google Scholar 

  91. de Groat WC. Inhibitory mechanisms in the sacral reflex pathways to the urinary bladder. In: Ryall RW, Kelly JS, editors. Iontophoresis and transmitter mechanisms in the mammalian central nervous system. Amsterdam: Elsevier; 1978.

    Google Scholar 

  92. de Groat WC, Booth AM, Milne RJ, et al. Parasympathetic preganglionic neurons in the sacral spinal cord. J Auton Nerv Syst. 1982;5:23–43.

    Article  PubMed  Google Scholar 

  93. de Groat WC. Central neural control of the lower urinary tract. Ciba Found Symp. 1990;151:27–44.

    PubMed  Google Scholar 

  94. de Groat WC, Steers WD. Autonomic regulation of the urinary bladder and sex organs. In: Loewy AD, Spyer KM, editors. Central regulation of autonomic functions. 1st ed. Oxford University Press: Oxford; 1990.

    Google Scholar 

  95. de Groat WC. Neural control of urinary bladder and sexual organs. In: Bannister R, Mathias CJ, editors. Autonomic failure. 3rd ed. Oxford University Press: Oxford; 1992.

    Google Scholar 

  96. Nour S, Svarer C, Kristensen JK, et al. Cerebral activation during micturition in normal men. Brain. 2000;123:781–9.

    Article  PubMed  Google Scholar 

  97. Tai C, Jin T, Wang P, et al. Brain switch for reflex micturition control detected by fMRI in rats. J Neurophysiol. 2009;102:2719–30.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Matsuura S, Kakizaki H, Mitsui T, et al. Human brain region response to distention or cold stimulation of the bladder: a positron emission tomography study. J Urol. 2002;168:2035–9.

    Article  PubMed  Google Scholar 

  99. Blok B, Holstege G. Direct projections from the periaqueductal gray to the pontine micturition centre (M-region). An anterograde and retrograde tracing study in the cat. Neurosci Lett. 1994;166:93–6.

    Article  CAS  PubMed  Google Scholar 

  100. Shah AP, Mevcha A, Wilby D, et al. Continence and micturition: an anatomical basis. Clin Anat. 2014;27:1275–83.

    Article  PubMed  Google Scholar 

  101. Langworthy OR, Kolb LC. Demonstration of encephalic control of micturition by electrical stimulation. Bull Johns Hopkins Hosp. 1935:37–49.

    Google Scholar 

  102. Kabat H, Magoun HW, Ranson SW. Reaction of the bladder to stimulation of points in the forebrain and midbrain. J Comp Neurol. 1936;63:211–39.

    Article  Google Scholar 

  103. Gjone R. Excitatory and inhibitory bladder responses to stimulation of ‘limbic’, diencephalic and mesencephalic structures in the cat. Acta Physiol Scand. 1966;66:91–102.

    Article  CAS  PubMed  Google Scholar 

  104. Koyama Y, Makuya A, Kuru M. Vesico-motor areas in the cat midbrain. Jpn J Physiol. 1962;12:63–80.

    Article  CAS  PubMed  Google Scholar 

  105. Skultety FM. Relation to periaqueductal gray matter to stomach and bladder motility. Neurology. 1959;9:190–8.

    Article  CAS  PubMed  Google Scholar 

  106. Numata A, Iwata T, Iuchi H, et al. Micturition suppressing region in the periaqueductal gray of the mesencephalon of the cat. Am J Phys. 2008;294:R1996–2000.

    CAS  Google Scholar 

  107. An X, Bandler R, Ongur D. Prefrontal cortical projections to longitudinal columns in the midbrain periaqueductal gray in macaque monkeys. J Comp Neurol. 1998;401:455–79.

    Article  CAS  PubMed  Google Scholar 

  108. Rosen SD, Paulesu E, Frith CD, et al. Central nervous pathways mediating angina pectoris. Lancet. 1994;344:147–50.

    Article  CAS  PubMed  Google Scholar 

  109. Weiller C, May A, Limmroth V, et al. Brain stem activation in spontaneous human migraine attacks. Nat Med. 1995;1:658–60.

    Article  CAS  PubMed  Google Scholar 

  110. Bandler R, Carrive P, Zhang SP. Integration of somatic and autonomic reactions within the midbrain periaqueductal gray: viscerotopic, somatotopic and functional organization. Prog Brain Res. 1991;87:269–305.

    Article  CAS  PubMed  Google Scholar 

  111. Holstege G, Bandler R, Saper CB. The emotional motor system. Prog Brain Res. 1996;107:3–6.

    Article  CAS  PubMed  Google Scholar 

  112. Van der Horst VG, Mouton LJ, Blok BF, et al. Distinct cell groups in the lumbosacral cord of the cat project to different areas in the periaqueductal gray. J Comp Neurol. 1996;376:361–85.

    Article  Google Scholar 

  113. Taniguchi N, Miyata M, Yachiku S, et al. A study of micturition inducing sites in the periaqueductal gray of the mesencephalon. J Urol. 2002;168:1626–31.

    Article  PubMed  Google Scholar 

  114. Holstege G. How the emotional motor system controls the pelvic organs. Sex Med Rev. 2016;4:303–28.

    Article  PubMed  Google Scholar 

  115. Liu Z, Sakakibara R, Nakazawa K, et al. Micturition related neuronal firing in the periaqueductal gray area in cats. Neuroscience. 2004;126:1075–82.

    Article  CAS  PubMed  Google Scholar 

  116. Griffiths DJ, Fowler CJ. The micturition switch and its forebrain influences. Acta Physiol (Oxf). 2013;207:93–109.

    Article  CAS  Google Scholar 

  117. Carmichael ST, Price JL. Connectional networks within the orbital and medial prefrontal cortex of macaque monkeys. J Comp Neurol. 1996;371:179–207.

    Article  CAS  PubMed  Google Scholar 

  118. Tang PC, Ruch TC. Localization of brain stem and diencephalic areas controlling the micturition reflex. J Comp Neurol. 1956;106:213–9.

    Article  PubMed  Google Scholar 

  119. Holstege G. Descending motor pathways and the spinal motor system: limbic and non-limbic components. Prog Brain Res. 1991;87:307–21.

    Article  CAS  PubMed  Google Scholar 

  120. Blok B, Willemsen T, Holstege G. A PET study of brain control of micturition in humans. Brain. 1997;120:111–21.

    Article  PubMed  Google Scholar 

  121. Blok BF, Holstege G. The central control of micturition and continence: implications for urology. Br J Urol Int. 1999;83(Suppl 2):1–6.

    Google Scholar 

  122. Sakakibara R, Nakazawa K, Shiba K, et al. Firing patterns of micturition-related neurons in the pontine storage centre in cats. Auton Neurosci. 2002;99:24–30.

    Article  PubMed  Google Scholar 

  123. Matsumoto G, Hisamitsu T, De Groat WC. Role of glutamate and NMDA receptors in the descending limb of the spinobulbospinal micturition reflex pathway of the rat. Neurosci Lett. 1995;183:58–61.

    Article  CAS  PubMed  Google Scholar 

  124. Valentino RJ, Chen S, Zhu Y, et al. Evidence for divergent projections to the brain noradrenergic system and the spinal parasympathetic system from Barrington’s nucleus. Brain Res. 1996;732:1–15.

    Article  CAS  PubMed  Google Scholar 

  125. Betts CD, Kapoor R, Fowler CJ. Pontine pathology and voiding dysfunction. Br J Urol. 1992;70:100–2.

    Article  CAS  PubMed  Google Scholar 

  126. Sasaki M. Role of Barrington’s nucleus in micturition. J Comp Neurol. 2005;493:21–6.

    Article  PubMed  Google Scholar 

  127. Swanson LW, Hartman BK. The central adrenergic system. An immunofluorescence study of the location of cell bodies and their efferent connections in the rat utilizing dopamine-beta-hydroxylase as a marker. J Comp Neurol. 1975;163:467–505.

    Article  CAS  PubMed  Google Scholar 

  128. Waterhouse BD, Devilbiss D, Fleischer D, et al. New perspectives on the functional organization and postsynaptic influences of the locus ceruleus efferent projection system. Adv Pharmacol. 1998;42:749–54.

    Article  CAS  PubMed  Google Scholar 

  129. Liu Y, Allen GV, Downie JW. Parabrachial nucleus influences the control of normal urinary bladder function and the response to bladder irritation in rats. Neuroscience. 2007;144:731–42.

    Article  CAS  PubMed  Google Scholar 

  130. Baez MA, Brink TS, Mason P. Roles for pain modulatory cells during micturition and continence. J Neurosci. 2005;25:384–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kuipers R, Mouton LJ, Holstege G. Afferent projections to the pontine micturition center in the cat. J Comp Neurol. 2006;494:36–53.

    Article  PubMed  Google Scholar 

  132. Bradley WE, Teague CT. Cerebellar regulation of the micturition reflex. J Urol. 1969;101: 396–99.

    Article  CAS  Google Scholar 

  133. Nishizawa O, Sugaya K, Shimoda N. Pontine and spinal modulation of the micturition reflex. Scand J Urol Nephrol. Suppl 1995;175:15–9.

    Google Scholar 

  134. Ranson SW. Some functions of the hypothalamus: Harvey Lecture, December 17, 1936. Bull N Y Acad Med. 1937;13:241–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Enoch DM, Kerr FW. Hypothalamic vasopressor and vesicopressor pathways. II. Anatomic study of their course and connections. Arch Neurol. 1967;16:307–20.

    Article  CAS  PubMed  Google Scholar 

  136. Stuart DG, Portner RW, Adey WR, et al. Hypothalamic unit activity: visceral and somatic influences. Electroencephalogr Clin Neurophysiol. 1964;16:237–41.

    Article  CAS  PubMed  Google Scholar 

  137. Yoshimura N, Mizuta E, Yoshida O, et al. Therapeutic effects of dopamine D1/D2 receptor agonists on detrusor hyperreflexia in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine—lesioned parkinsonian cynomolgus monkeys. J Pharmacol Exp Ther. 1998;286:228–33.

    CAS  PubMed  Google Scholar 

  138. Seki S, Igawa Y, Kaidoh K, et al. Role of dopamine D1 and D2 receptors in the micturition reflex in conscious rats. Neurourol Urodyn. 2001;20:105–13.

    Article  CAS  PubMed  Google Scholar 

  139. Kitta T, Matsumoto M, Tanaka H, et al. GABAergic mechanism mediated via D receptors in the rat periaqueductal gray participates in the micturition reflex: an in vivo microdialysis study. Eur J Neurosci. 2008;27:3216–25.

    Article  PubMed  Google Scholar 

  140. Critchley HD, Wiens S, Rotshtein P, et al. Neural systems supporting interoceptive awareness. Nat Neurosci. 2004;7:189–95.

    Article  CAS  PubMed  Google Scholar 

  141. Salzman CD, Fusi S. Emotion, cognition, and mental state representation in amygdala and prefrontal cortex. Annu Rev Neurosci. 2010;33:173–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Schaefer DC, Cheskin LJ. Constipation in the elderly. Am Fam Physician. 1998;58:907–14.

    CAS  PubMed  Google Scholar 

  143. Wald A, Hinds JP, Caruana BJ. Psychological and physiological characteristics of patients with severe idiopathic constipation. Gastroenterology. 1989;97:932–7.

    Article  CAS  PubMed  Google Scholar 

  144. Nehra V, Bruce BK, Rath-Harvey DM, et al. Psychological disorders in patients with evacuation disorders and constipation in a tertiary practice. Am J Gastroenterol. 2000;95:1755–8.

    Article  CAS  PubMed  Google Scholar 

  145. Dykes S, Smilgin-Humphreys S, Bass C. Chronic idiopathic constipation: a psychological enquiry. Eur J Gastroenterol Hepatol. 2001;13:39–44.

    Article  CAS  PubMed  Google Scholar 

  146. Partin JC, Hamill SK, Fischel JE, et al. Painful defecation and fecal soiling in children. Pediatrics. 1992;89:1007–9.

    CAS  PubMed  Google Scholar 

  147. Rao SS, Sadeghi P, Beaty J, et al. Ambulatory 24-h colonic manometry in healthy humans. Am J Physiol Gastrointest Liver Physiol. 2001;280:G629–39.

    Article  CAS  PubMed  Google Scholar 

  148. Dinning PG, Zarate N, Szczesniak MM, et al. Bowel preparation affects the amplitude and spatiotemporal organization of colonic propagating sequences. Neurogastroenterol Motil. 2010;22:633–e176.

    Article  CAS  PubMed  Google Scholar 

  149. Bampton P, Dinning P, Kennedy M, Lubowski D, Cook I. Prolonged multi-point recording of colonic manometry in the unprepared human colon: providing insight into potentially relevant pressure wave parameters. Am J Gastroenterol. 2001;96:1838–48.

    Article  CAS  PubMed  Google Scholar 

  150. Bassotti G, Chistolini F, Nzepa F, Morelli A. Colonic propulsive impairment in intractable slow-transit constipation. Arch Surg. 2003;138:1302–4.

    Article  PubMed  Google Scholar 

  151. Palit S, Lunniss PJ, Scott SM. The physiology of human defecation. Dig Dis Sci. 2012;57(6):1445–64.

    Article  PubMed  Google Scholar 

  152. Bajwa A, Emmanuel A. The physiology of continence and evacuation. Best Pract Res Clin Gastroenterol. 2009;23:477–85.

    Article  PubMed  Google Scholar 

  153. Shafik A. Dilatation and closing anal reflexes. Description and clinical significance of new reflexes: preliminary report. Acta Anat (Basel). 1991;142:293–8.

    Article  CAS  Google Scholar 

  154. Furness J, Callaghan B. Rivera L, et al. In: Lyte M, Cryan JF, editors. Microbial endocrinology: the microbiota-gut-brain axis in health and disease, advances in experimental medicine and biology. New York: Springer; 2014.

    Google Scholar 

  155. De Giorgio R, Lioce A, Barbara G, et al. Disordini della motilità gastrointestinale da alterazioni primitive del Sistema Nervoso Enterico. Neuro Gastroenterologia. 2003;3(4):51–62.

    Google Scholar 

  156. Bazzocchi G, Ellis J, Villanueva-Meyer J, et al. Effect of eating on colonic motility and transit in patients with functional diarrhea. Simultaneous scintigraphic and manometric evaluations. Gastroenterology. 1991;101:1298–306.

    Article  CAS  PubMed  Google Scholar 

  157. Bharucha A. Pelvic floor: anatomy and function. Neurogastroenterol Motil. 2006;18:507–19.

    Article  CAS  PubMed  Google Scholar 

  158. Altman J, Bayer SA. The development of the rat spinal cord. Adv Anat Embryol Cell Biol. 1984;85:1–14.

    Article  CAS  PubMed  Google Scholar 

  159. Vanner SJ, Greenwood-Van Meerveld B, Mawe GM, et al. Fundamentals of neurogastroenterology: basic science. Gastroenterology. 2016;150:1280–91.

    Article  Google Scholar 

  160. Duthie HL, Gairns FW. Sensory nerve endings and sensation in the anal region of man. Br J Surg. 1960;47:585–95.

    Article  CAS  PubMed  Google Scholar 

  161. Goligher JC. The functional results after sphincter-saving resections of the rectum. Ann R Coll Surg Engl. 1951;8:421–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Sengupta JN, Gebhart GF. Characterization of mechanosensitive pelvic nerve afferent fibers innervating the colon of the rat. J Neurophysiol. 1994;71:2046–60.

    Article  CAS  PubMed  Google Scholar 

  163. Goligher JC, Hughes ES. Sensibility of the rectum and colon. Its role in the mechanism of anal continence. Lancet. 1951;1:543–7.

    Article  CAS  PubMed  Google Scholar 

  164. Burstein R, Cliffer KD, Giesler GJ. Direct somatosensory projections from the spinal cord to the hypothalamus and telencephalon. J Neurosci. 1987;7:4159–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Menetrey D, Basbaum AI. Spinal and trigeminal projections to the nucleus of the solitary tract: a possible substrate for somatovisceral and viscerovisceral reflex activation. J Comp Neurol. 1987;255:439–50.

    Article  CAS  PubMed  Google Scholar 

  166. Torvik A. Afferent connections to the sensory trigeminal nuclei, the nucleus of the solitary tract and adjacent structures; an experimental study in the rat. J Comp Neurol. 1956;106:51–141.

    Article  CAS  PubMed  Google Scholar 

  167. Sato A, Schmidt RF. Somatosympathetic reflexes: afferent fibers, central pathways, discharge characteristics. Physiol Rev. 1973;53:916–47.

    Article  CAS  PubMed  Google Scholar 

  168. Valentino RJ, Miselis RR, Pavcovich LA. Pontine regulation of pelvic viscera: pharmacological target for pelvic visceral dysfunction. Trends Pharmacol Sci. 1999;20:253–60.

    Article  CAS  PubMed  Google Scholar 

  169. Kiddoo DA, Valentino RJ, Zderic S, et al. Impact of state of arousal and stress neuropeptides on urodynamic function in freely moving rats. Am J Physiol Regul Integr Comp Physiol. 2006;290:R1697–706.

    Article  CAS  PubMed  Google Scholar 

  170. Suzuki T, Sugiyama Y, Yates BJ. Integrative responses of neurons in parabrachial nuclei to a nauseogenic gastrointestinal stimulus and vestibular stimulation in vertical planes. Am J Physiol Regul Integr Comp Physiol. 2012;302:R965–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Tache Y, Bonaz B. Corticotropin-releasing factor receptors and stress-related alterations of gut motor function. J Clin Invest. 2007;117:33–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Rouzade-Dominguez ML, Pernar L, Beck S, et al. Convergent responses of Barrington’s nucleus neurons to pelvic visceral stimuli in the rat: a juxtacellular labelling study. Eur J Neurosci. 2003;18:3325–34.

    Article  PubMed  Google Scholar 

  173. Kalia M, Sullivan JM. Brainstem projections of sensory and motor components of the vagus nerve in the rat. J Comp Neurol. 1982;211:248–64.

    Article  CAS  PubMed  Google Scholar 

  174. Rogers J. Testing for and the role of anal and rectal sensation. Bailliere’s Clin Gastroenterol. 1992;6:179–91.

    Article  CAS  Google Scholar 

  175. Brookes SJ, Dinning PG, Gladman MA. Neuroanatomy and physiology of colorectal function and defaecation: from basic science to human clinical studies. Neurogastroenterol Motil. 2009;21:9–19.

    Article  PubMed  Google Scholar 

  176. Lomax AE, Sharkey KA, Furness JB. The participation of the sympathetic innervation of the gastrointestinal tract in disease states. Neurogastroenterol Motil. 2010;22:7–18.

    CAS  PubMed  Google Scholar 

  177. Janig W, McLachlan EM. Organization of lumbar spinal outflow to distal colon and pelvic organs. Physiol Rev. 1987;67:1332–404.

    Article  CAS  PubMed  Google Scholar 

  178. Simmons MA. The complexity and diversity of synaptic transmission in the prevertebral sympathetic ganglia. Prog Neurobiol. 1985;24:43–93.

    Article  CAS  PubMed  Google Scholar 

  179. Sakakibara R, Kishi M, Ogawa E, et al. Bladder, bowel, and sexual dysfunction in Parkinson’s disease. Parkinson’s Dis. 2011;2011:924605.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lamberti, G., Biroli, A. (2020). The Bladder, the Rectum and the Sphincters: Neural Pathways and Peripheral Control. In: Lamberti, G., Giraudo, D., Musco, S. (eds) Suprapontine Lesions and Neurogenic Pelvic Dysfunctions. Urodynamics, Neurourology and Pelvic Floor Dysfunctions. Springer, Cham. https://doi.org/10.1007/978-3-030-29775-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29775-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29774-9

  • Online ISBN: 978-3-030-29775-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics