Skip to main content

Nanomaterials for Selective Targeting of Intracellular Pathogens

  • Chapter
  • First Online:
Nanotheranostics

Abstract

Many infectious diseases are caused by intracellular pathogens such as Mycobacterium tuberculosis, Salmonella enterica serovar Typhi, Listeria monocytogenes, Plasmodium species, Toxoplasma gondii, Brucella species, and Cryptococcus neoformans. Infections caused by such pathogens are treated with antimicrobial agents. Nevertheless, selective targeting of intracellular pathogens is difficult due to the reason that the drug has to enter the infected host cells in order to target or kill the infectious agent. Further, nonspecific interaction of the antimicrobial agent also affects noninfected body cells. On one side there is substantial loss of drug in the body due to nonspecific interaction while, on the other hand, many drugs find it difficult to enter the host cells. Targeted drug delivery using nanomaterials offers unique and efficient opportunity to deliver the drug loaded in the nanocarriers such as liposomes, polymeric nanoparticles, or micelles into the host cells infected with intracellular pathogens. Furthermore, sustained drug release inside the infected cells may solve the issues of bioavailability and patient compliance. Research studies conducted by different groups have shown promising results of drug-loaded nanocarriers against intracellular pathogens in a number of studies. This chapter discusses various types of intracellular pathogens, nanocarriers, and their role in targeted drug delivery of intracellular pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AuNPs:

Gold nanoparticles

CAMP:

Cationic antimicrobial peptides

CPP:

Cell-penetrating peptides

LPG:

Lipophosphoglycan

MPS:

Mononuclear phagocytic system

MSNPs:

Mesoporous silica nanoparticles

PEG:

Polyethylene glycol

PLA:

Poly lactic acid

PLGA:

Poly lactide-co-glycolide

PMA:

Polymethacrylic acid

PMs:

Polymeric micelles

PV:

Parasitophorous vacuole

SCV:

Salmonella containing vacuole

SLNPs:

Solid lipid nanoparticles

T3SS:

Type III secretion system

References

  • Abrhaley A, Mitku F. Review on targeted drug delivery against intracellular pathogen. Pharm Pharmacol Int J. 2018;6(3):183–9.

    Google Scholar 

  • Akhter S, Ahmad MZ, Ahmad FJ, Storm G, Kok RJ. Gold nanoparticles in theranostic oncology: current state-of-the-art. Expert Opin Drug Deliv. 2012;9(10):1225–43.

    Article  CAS  PubMed  Google Scholar 

  • Alavi M, Karimi N, Safae M. Application of various types of liposomes in drug delivery systems. Adv Pharm Bull. 2017;7(1):3–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aliabadi HM, Lavasanifar A. Polymeric micelles for drug delivery. Expert Opin Drug Deliv. 2006;3(1):139–62.

    Article  CAS  PubMed  Google Scholar 

  • Alvarez M, Casadevall A. Phagosome extrusion and host cell survival after Cryptococcus neoformans phagocytosis by macrophages. Curr Biol. 2006;16:2161–5.

    Article  CAS  PubMed  Google Scholar 

  • Armstead AL, Li B. Nanomedicine as an emerging approach against intracellular pathogens. Int J Nanomedicine. 2011;6:3281–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Atbiaw N, Aman E, Dessalegn B, Masrie O, Debalke B, Enbiyale G, Yirga A, Tekilu G, Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol. 1965;13:238–52.

    Article  Google Scholar 

  • Banik BL, Fattahi P, Brown JL. Polymeric nanoparticles: the future of nanomedicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2016;8(2):271–99.

    Article  PubMed  Google Scholar 

  • Baruah UK, Gowthamrajan K, Vanka R, Kari VVSK, Selvaraj K, Jo Jo GM. Malaria treatment using novel nano-based drug delivery systems. J Drug Target. 2017;25:567–81.

    Article  CAS  PubMed  Google Scholar 

  • Bei D, Meng J, Youan BC. Engineering nanomedicines for improved melanoma therapy: progress and promises. Nanomedicine (Lond). 2010;5(9):1385–99.

    Article  CAS  Google Scholar 

  • Brothers KM, Gratacap RL, Barker SE, Newman ZR, Norum A, Wheeler RT. NADPH oxidase-driven phagocyte recruitment controls Candida albicans filamentous growth and prevents mortality. PLoS Pathog. 2013;9:1–17.

    Article  CAS  Google Scholar 

  • Calderon-Colon X, Raimondi G, Benkoski JJ, Patrone JB. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. J Vis Exp. 2015;2015(105):1–8.

    Google Scholar 

  • Carryn S, Chanteux H, Seral C, Mingeot-Leclercq MP, Van Bambecke F, Tulkens PM. Intracellular pharmacodynamics of antibiotics. Infect Dis Clin. 2003;17(3):615–34.

    Article  Google Scholar 

  • Casadevall A. Evolution of intracellular pathogens. Ann Rev Microbiol. 2008;62:19–33.

    Article  CAS  Google Scholar 

  • Chan JM, Valencia PM, Zhang L, Langer R, Farokhzad OC. Polymeric nanoparticles for drug delivery. Methods Mol Biol. 2010;624:163–75.

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee SS, Hossain H, Otten S, Kuenne C, Kuchmina K, Machata S, Domann E, Chakraborty T, Hain T. Intracellular gene expression profile of Listeria monocytogenes. Infect Immun. 2006;74(2):1323–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen F, Ehlerdin EB, Cai W. Theranostic nanoparticles. J Nucl Med. 2014;55(12):1919–22.

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Zhang Q, Hou Y, Zhang J, Liang XJ. Nanomaterials in medicine and pharmaceuticals: nanoscale materials developed with less toxicity and more efficacy. Eur J Nanomed. 2013;5(2):61–79.

    Article  Google Scholar 

  • Choi SR, Britigan BE, Morgan DM, Narayanasamy P. Gallium nanoparticles facilitate phagosome maturation and inhibit growth of virulent Mycobacterium tuberculosis in macrophages. PLoS One. 2017;12(5):1–20.

    Google Scholar 

  • Chowdhury R, Ilyas H, Ghosh A, Ali H, Ghorai A, Midya A, Jana NR, Das S, Bhunia A. Multivalent gold nanoparticle–peptide conjugates for targeting intracellular bacterial infections. Nanoscale. 2017;9:14073–93.

    Google Scholar 

  • Clemens DL, Lee BY, Xue M, Thomas CR, Meng H, Ferris D, Nel AE, Zink JI, Horwitz MA. Targeted intracellular delivery of antituberculosis drugs to Mycobacterium tuberculosis-infected macrophages via functionalized mesoporous silica nanoparticles. Antimicrob Agents Chemother. 2012;56(5):2535–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai X, Fan Z, Lu Y, Ray PC. Multifunctional nanoplatforms for targeted multidrug-resistant-bacteria theranostic applications. ACS Appl Mater Interfaces. 2013;5(21):11348–54.

    Article  CAS  PubMed  Google Scholar 

  • Dalbhanjan RR, Bomble SD. Biomedical approach of nanomaterials for drug delivery. Int J Chem Chem Eng. 2013;3(2):95–100.

    Google Scholar 

  • De Steenwinkel JE, Van Vianen W, Ten Kate MT, Verbruch HA, Van Agtmael MA, Schifellers RA, Bakker-Woudenberg IAJM. Targeted drug delivery to enhance efficacy and shorten treatment duration in disseminated Mycobacterium avium infection in mice. J Antimicrob Chemother. 2007;60:1064–73.

    Article  PubMed  CAS  Google Scholar 

  • Dehio C, Berry C, Bartenschlager R. Persistent intracellular pathogens. FEMS Microbiol Rev. 2012;36(12):513.

    Article  CAS  PubMed  Google Scholar 

  • Delsol AA, Woodward MJ, Roe J. Effect of a 5 day enrofloxacin treatment on Salmonella enterica serotype Typhimurium DT104 in the pig. Antimicrob Chemother. 2004;54:692–3.

    Article  CAS  Google Scholar 

  • Desjardins M, Descoteaux A. Survival strategies of Leishmania donovani in mammalian host macrophages. J Immunol Res. 1998;149(7–8):689–92.

    Article  CAS  Google Scholar 

  • Din F, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S, Zeb A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine. 2017;12:7291–309.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dolatabadi JEN, Valizadeh H, Hamishehkar H. Solid lipid nanoparticles as efficient drug and gene delivery systems: recent breakthroughs. Adv Pharm Bull. 2015;5(2):151–9.

    Article  CAS  Google Scholar 

  • Dreaden EC, Austin LA, Mackey MA, El-Syed MA. Size matters: gold nanoparticles in targeted cancer delivery. Ther Deliv. 2012;3(4):457–78.

    Article  CAS  PubMed  Google Scholar 

  • El-Say KM, El-Sawy HS. Polymeric nanoparticles: promising platform for drug delivery. Int J Pharm. 2017;528(1–2):675–91.

    Article  CAS  PubMed  Google Scholar 

  • Ernst RK, Guina T, Miller SI. How intracellular bacteria survive: surface modifications that promote resistance to host innate immune responses. J Infect Dis. 1999;179(2):S326–30.

    Article  CAS  PubMed  Google Scholar 

  • Fahmy TM, Fong PM, Goyal A, Saltzman WM. Targeted for drug delivery. Mater Today. 2005;8(8):18–26.

    Article  Google Scholar 

  • Fernandez-Busquets X. Novel strategies for Plasmodium-targeted drug delivery. Expert Opin Drug Deliv. 2016;13(7):919–22.

    Article  PubMed  Google Scholar 

  • Gagliardi M. Novel biodegradable nanocarriers for enhanced drug delivery. Ther Deliv. 2016;7(12):809–26.

    Article  CAS  PubMed  Google Scholar 

  • Gilbert AS, Wheeler RT, May RC. Fungal pathogens: survival and replication within macrophages. Cold Spring Harb Perspect. 2015;5:1–13.

    CAS  Google Scholar 

  • Giri N, Tomar P, Karwasara VS, Pandey RS, Dixit VK. Targeted novel surface-modified nanoparticles for interferon delivery for the treatment of hepatitis B. Acta Biochim Biophys Sin. 2011;43:877–83.

    Article  CAS  PubMed  Google Scholar 

  • Gomes PS, Bhardwaj J, Correa JR, Freire-De-Lima CG. Immune Escape Strategies of malaria parasites. Front Micbiol. 2016;7:1–7.

    Google Scholar 

  • Gopalasatheeskuma K, Komala S, Mahalakshmi M. An overview on polymeric nanoparticles used in the treatment of diabetes mellitus. Pharma Tutor. 2017;5(12):40–6.

    Article  Google Scholar 

  • Hans ML, Lowman AM. Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid State Mater Sci. 2002;6(4):319–27.

    Article  CAS  Google Scholar 

  • Hillaireau H, Couvreur P. Nanocarriers’ entry into the cell: relevance to drug delivery. Cell Mol Life Sci. 2009;66:2873–96.

    Article  CAS  PubMed  Google Scholar 

  • Hossen S, Hossain MK, Basher MK, Mia MNH, Rehman MT, Uddin MJ. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: a review. J Adv Res. 2018;15:1–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Howell M, Wang C, Mahmoud A, Hellermann G, Mohapatra SS, Mohapatra S. Dual-function theranostic nanoparticles for drug delivery and medical imaging contrast: perspectives and challenges for use in lung diseases. Drug Deliv Transl Res. 2013;3:352–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubbell JA, Chilkoti A. Nanomaterials for drug delivery. Science. 2012;339:303–5.

    Article  Google Scholar 

  • Ibarra JA, Mortimer OS. Salmonella—the ultimate insider Salmonella virulence factors that modulate intracellular survival. Cell Microbiol. 2009;11(11):1579–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jagtap P, Sritharan V, Gupta S. Nanotheranostic approaches for management of bloodstream bacterial infections. Nanomedicine. 2017;13(1):329–41.

    Article  CAS  PubMed  Google Scholar 

  • Kamaruzzaman F, Kendall S. Targeting the hard to reach: challenges and novel strategies in the treatment of intracellular bacterial infections. Br J Pharmacol. 2017;174:2225–36.

    Article  CAS  PubMed  Google Scholar 

  • Karlsson J, Vaughan HJ, Green JJ. Biodegradable polymeric nanoparticles for therapeutic cancer treatments. Annu Rev Chem Biomol Eng. 2018;9:105–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kedar U, Phutane P, Shidhaye S, Kadam V. Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine. 2010;6:714–29.

    Article  CAS  PubMed  Google Scholar 

  • Kelkar SS, Reineke TM. Theranostics: combining imaging and therapy. Bioconjug Chem. 2011;22(10):1879–903.

    Article  CAS  PubMed  Google Scholar 

  • Kelly C, Jefferies C, Cryan SA. Targeted liposomal drug delivery to monocytes and macrophages. J Drug Deliv. 2011;2011:1–11.

    Article  CAS  Google Scholar 

  • Kim JS. Liposomal drug delivery system. J Pharm Investig. 2016;46(4):387–92.

    Article  CAS  Google Scholar 

  • Klemm EJ, Shakoor S, Page AJ, Qamar FN, Judge K, Saeed DK, Wong VK, Dallman TJ, Nair S, Baker S, Shaheen G, Qureshi S, Yousafzai MT, Saleem MK, Hasan Z, Dougan G, Hasan R. Emergence of an extensively drug resistant Salmonella enterica serovar Typhi clone harboring a promiscuous plasmid encoding resistance to fluoroquinolones and third-generation cephalosporins. MBio. 2018;9(1):1–10.

    Article  Google Scholar 

  • Kong FY, Zhang JW, Li RF, Wang ZX, Wang WJ, Wang W. Unique roles of gold nanoparticles in drug delivery, targeting and imaging applications. Molecules. 2017;22:1–13.

    Google Scholar 

  • Kumari P, Ghosh B, Biswas S. Nanocarriers for cancer-targeted drug delivery. J Drug Target. 2016;24(3):179–91.

    Article  CAS  PubMed  Google Scholar 

  • Ladaviere C, Gref R. Toward an optimized treatment of intracellular bacterial infections: input of nanoparticulate drug delivery systems. Fut Med. 2015;10(9):3033–55.

    CAS  Google Scholar 

  • Lamprecht A, Urich N, Yamamoto H, Schaefer U, Takeuchi H, Maincent P, Kawashima Y, Lehr CM. Biodegradable nanoparticles for targeted drug delivery in treatment of inflammatory bowel disease. J Pharmacol Exp Ther. 2001;299(2):775–81.

    CAS  PubMed  Google Scholar 

  • Lemmer Y, Kalombo L, Pietersen DY, Jones AT, Semete-Makokotlela B, Wyngaardt SV, Ramalapa B, Stoltz AC, Baker B, Verschoor JA, Swai HS, Chastellier C. Mycolic acids, a promising mycobacterial ligand for targeting of nanoencapsulated drugs in tuberculosis. J Control Release. 2015;211:94–104.

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Tan S, Li S, Shen Q, Wang K. Cancer drug delivery in the nano era: an overview and perspectives (review). Oncol Rep. 2017;38:611–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin YS, Lee MY, Yang CH, Huang KS. Active targeted drug delivery for microbes using nano-carriers. Curr Top Med Chem. 2015;15(15):1525–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu P, Xu LQ, Xu G, Pranantyo D, Neoh KG, Kang ET. pH-sensitive theranostic nanoparticles for targeting bacteria with fluorescence imaging and dual-modal antimicrobial therapy. ACS Appl Nano Mater. 2018;1:6187–96.

    Article  CAS  Google Scholar 

  • Mauel J. Mechanisms of survival of protozoan parasites in mononuclear phagocytes. Parasitology. 1984;88(4):579–92.

    Article  CAS  PubMed  Google Scholar 

  • Maurin M, Raoult D. Use of aminoglycosides in treatment of infections due to intracellular bacteria. Antimicrob Agents Chemother. 2001;45(11):2977–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller LH, Good MF, Milon G. Malaria pathogenesis. Science. 1994;264(5167):1878–83.

    Article  CAS  PubMed  Google Scholar 

  • Mishra V, Bansal K, Verma A, Yadav N, Thakur S, Sudhakar K, Rosenholm J. Solid lipid nanoparticles: emerging colloidal nano drug delivery systems. Pharmaceutics. 2018;10(4):1–21.

    Article  CAS  Google Scholar 

  • Moles E, Moll K, Ching JH, Parini P, Wahgren M, Busquest X. Development of drug-loaded immunoliposomes for the selective targeting and elimination of rosetting Plasmodium falciparum-infected red blood cells. J Control Release. 2016;241:57–67.

    Article  CAS  PubMed  Google Scholar 

  • Moritz M, Gezske-Moritz M. Recent developments in the application of polymeric nanoparticles as drug carriers. Adv Clin Exp Med. 2015;24(5):749–58.

    Article  PubMed  Google Scholar 

  • Morton CO, Bouzani M, Loeffler J, Rogers TR. Direct interaction studies between Aspergillus fumigatus and human immune cells; what have we learned about pathogenicity and host immunity? Front Microbiol. 2012;3(413):1–7.

    Google Scholar 

  • Mudakavi RJ, Vanamali S, Chakarvortty D, Raichur AM. Development of arginine based nanocarriers for targeting and treatment of intracellular Salmonella. RSC Adv. 2017;7:7022–32.

    Article  CAS  Google Scholar 

  • Mukherjee S, Das L, Kole L, Karmakar S, Datta N, Das K. Targeting of parasite-specific immunoliposome encapsulated doxorubicin in the treatment of experimental visceral leishmaniasis. J Infect Dis. 2004;189:124–34.

    Article  Google Scholar 

  • Mukherjee S, Ray S, Thakur RS. Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian J Pharm Sci. 2009;71(4):349–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagavarma BVN, Yadav HKS, Ayaz A, Vasudha LS, Shivakumar SG. Different techniques for preparation of polymeric nanoparticles –a review. Asian J Pharm Clin Res. 2012;5(3):16–23.

    CAS  Google Scholar 

  • Niller HH, Masa R, Venkei A, Meszaros S, Minarovits J. Pathogenic mechanisms of intracellular bacteria. Curr Opin Infect Dis. 2017;30(3):309–15.

    Article  PubMed  Google Scholar 

  • Oeztuerk-Atar K, Eroglu H, Calis S. Novel advances in targeted drug delivery. J Drug Target. 2018;26:633–42.

    Article  Google Scholar 

  • Ovais M, Raza A, Naz S, Islam NU, Khalil AT, Ali S, Khan MA, Shinwari ZK. Current state and prospects of the phytosynthesized colloidal gold nanoparticles and their applications in cancer theranostics. Appl Microbiol Biotechnol. 2017;101(9):3551–65.

    Article  CAS  PubMed  Google Scholar 

  • Patel SK, Janjic JM. Macrophage targeted theranostics as personalized nanomedicine strategies for inflammatory diseases. Theranostics. 2015;5:150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paulo CSO, Neves RP, Ferreira LS. Nanoparticles for intracellular-targeted drug delivery. Nanotechnology. 2011;22:1–12.

    Article  Google Scholar 

  • Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2:751–60.

    Article  CAS  PubMed  Google Scholar 

  • Ranjan A, Pothayee N, Saleem MN, Boyle SM, Kasimnickam R, Riffle JS, Sriranganathan N. Nanomedicine for intracellular therapy. FEMS Microbiol Lett. 2012;332:1–9.

    Article  CAS  PubMed  Google Scholar 

  • Rizzo LY, Theek B, Storm G, Kiessling F, Lammers T. Recent progress in nanomedicine: therapeutic, diagnostic and theranostic applications. Curr Opin Biotechnol. 2013;24:1159–66.

    Article  CAS  PubMed  Google Scholar 

  • Ruggiero C, Pastorino L, Herrera OL. Nanotechnology based targeted drug delivery, 32nd Annual International Conference of the IEEE EMBS Buenos Aires, Argentina, August 31–September 4, 2010.

    Google Scholar 

  • Saleem MN, Jain N, Pothayee N, Ranjan A, Riffle JS, Sriranganathan N. Targeting Brucella melitensis with polymeric nanoparticles containing streptomycin and doxycycline. FEMS Microbiol Lett. 2009a;294(1):24–31.

    Article  CAS  Google Scholar 

  • Saleem MN, Munosamy P, Ranjan A, Alqublan H, Pickrell G, Sriranganathan N. Silica-antibiotic hybrid nanoparticles for targeting intracellular pathogens. Antimicrob Agents Chemother. 2009b;53(10):4270–4.

    Article  CAS  Google Scholar 

  • Senapati S, Mahanta AK, Kumar S, Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther. 2018;3(7):1–19.

    Google Scholar 

  • Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and challenges of liposome assisted drug delivery. Front Pharmacol. 2015;6:1–13.

    Google Scholar 

  • Sibley LD, Weidner E, Krahenbuhl JL. Phagosome acidification blocked by intracellular Toxoplasma gondii. Nature. 1985;315:416–9.

    Article  CAS  PubMed  Google Scholar 

  • Silva M. Classical labelling of bacterial pathogens according to their lifestyle in the host: inconsistencies and alternatives. Front Microbiol. 2012;3:1–7.

    Article  Google Scholar 

  • Singh L, Parboosing R, Kruger HG, Maguire GEM, Govender T. Intracellular localization of gold nanoparticles with targeted delivery in MT-4 lymphocytes. Adv Nat Sci Nanosci Nanotechnol. 2016;7:1–8.

    CAS  Google Scholar 

  • Singh R, Lilliard JW. Toward an optimized treatment of intracellular bacterial infections: input of nanoparticulate drug delivery systems. Exp Mol Pathol. 2009;86(3):215–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinha R, Kim GJ, Nie S, Shin DM. Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol Cancer Ther. 2006;5(8):1909–17.

    Article  CAS  PubMed  Google Scholar 

  • Spinosa MR, Progida C, Tala A, Cogli L, Alifano P, Bucci C. The Neisseria meningitidis capsule is important for intracellular survival in human cells. Infect Immun. 2007;75(7):3594–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Syed MA, Bokhari SH. Gold nanoparticles based microbial detection and identification. J Biomed Nanotechnol. 2011;7(2):229–37.

    Article  CAS  PubMed  Google Scholar 

  • Tan BH, Meinken C, Bastian M, Bruns H, Legaspi A, Ochoa MT, Krutzik SR, Bloom BR, Ganz T, Modlin RL, Stenger S. Macrophages acquire neutrophil granules for antimicrobial activity against intracellular pathogens. J Immunol. 2006;177(3):1864–71.

    Article  CAS  PubMed  Google Scholar 

  • Thakkar M, Brijesh S. Combating malaria with nanotechnology-based targeted and combinatorial drug delivery strategies. Drug Deliv Transl Res. 2016;6(4):414–25.

    CAS  PubMed  Google Scholar 

  • Thi EP, Lambertz U, Reiner NE. Sleeping with the enemy: how intracellular pathogens cope with a macrophage lifestyle. PLoS Pathog. 2012;2012(8):1–4.

    Google Scholar 

  • Toledo DAM, Avila HD, Melo RCN. Host lipid bodies as platforms for intracellular survival of protozoan parasites. Front Immunol. 2016;7(174):1–6.

    Google Scholar 

  • Toti US, Guru BR, Hali M, McPharlin C, Wykes SM, Panyam J, Whittum-Hudson JA. Targeted delivery of antibiotics to intracellular chlamydial infections using PLGA nanoparticles. Biomaterials. 2011;32(27):6606–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uddin F, Aman W, Ullah I, Qureshi US, Mustapha U, Shafique S, Zeb A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine. 2017;12:7291–309.

    Article  CAS  Google Scholar 

  • Ueno N. Host and parasite determinants of Leishmania survival following phagocytosis by macrophages. PhD (Doctor of Philosophy) thesis, University of Iowa; 2011

    Google Scholar 

  • Urban P, Estelrich J, Adeva A, Cortes A, Fernandez-Busquets X. Study of the efficacy of antimalarial drugs delivered inside targeted immunoliposomalanovectors. Nanoscale Res Lett. 2011;6:1–9.

    Article  CAS  Google Scholar 

  • Urban P, Ranucci E, Fernandez-Busquets X. Polyamidoamine nanoparticles as nanocarriers for the drug delivery to malaria parasite stages in the mosquito vector. Nanomedicine. 2015;10(22):3401–14.

    Article  CAS  PubMed  Google Scholar 

  • Urban P, Valle Delgado JJ, Mauro N, Marques J, Manfredi A, Rottmann M, Ranucci E, Ferruti P, Fernandez-Busquets X. Use of poly(amidoamine) drug conjugates for the delivery of antimalarials to Plasmodium. J Control Release. 2014;177:84–95.

    Article  CAS  PubMed  Google Scholar 

  • Ventola CL. Progress in nanomedicine: approved and investigational nanodrugs. Pharm Ther. 2017;42(12):742–55.

    Google Scholar 

  • Vieira ACC, Magalhaes J, Rocha S, Cardoso MS, Santos SG, Borges M, Pinheiro M, Reis S. Targeted macrophages delivery of rifampicin-loaded lipid nanoparticles to improve tuberculosis treatment. Nanomedicine. 2017;12(24):2721–36.

    Article  CAS  PubMed  Google Scholar 

  • Walburger A, Koul A, Ferrari G, Nguyen L, Baschong CP, Huygen K, Klebal B, Thomson C, Bacher G, Pieters J. Protein kinase G from pathogenic Mycobacteria promotes survival within macrophages. Science. 2004;304:1800–4.

    Article  CAS  PubMed  Google Scholar 

  • Xie J, Lee S, Chen X. Nanoparticle-based theranostic agents. Adv Drug Deliv Rev. 2010;62:1064–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie S, Tao Y, Pan Y, Qu W, Cheng G, Huang L, Chen D, Wang X, Liu Z, Yuan Z. Biodegradable nanoparticles for intracellular delivery of antimicrobial agents. J Control Release. 2014;187:101–17.

    Article  CAS  PubMed  Google Scholar 

  • Xie S, Yang F, Tao Y, Chen D, Qu W, Huang L, Liu Z, Pan Y, Yuan Z. Enhanced intracellular delivery and antibacterial efficacy of enrofloxacin-loaded docosanoic acid solid lipid nanoparticles against intracellular Salmonella. Sci Rep. 2017;7:1–9.

    Article  CAS  Google Scholar 

  • Xu W, Ling P, Zhang T. Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J Drug Deliv. 2013;2013:1–13.

    Article  CAS  Google Scholar 

  • Yang K, Feng L, Shi X, Liu Z. Nano-graphene in biomedicine: theranostic applications. Chem Soc Rev. 2013;42(2):530–47.

    Article  CAS  PubMed  Google Scholar 

  • Ye J, Liu E, Yu Z, Pei X, Chen S, Zhang P, Shin MC, Gong J, He H, Yang VC. CPP-assisted intracellular drug delivery, what is next? Int J Mol Sci. 2016;17(1892):1–16.

    Google Scholar 

  • Yu X, Trase I, Ren M, Duval K, Guo X, Chen Z. Design of nanoparticle-based carriers for targeted drug delivery. J Nanomater. 2016;2016:1–16.

    Google Scholar 

  • Zhang Y, Huang Y, Li S. Polymeric micelles: nanocarriers for cancer-targeted drug delivery. AAPS Pharm Sci Tech. 2014;15(4):862–71.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Syed, M.A., Ali, N. (2019). Nanomaterials for Selective Targeting of Intracellular Pathogens. In: Rai, M., Jamil, B. (eds) Nanotheranostics. Springer, Cham. https://doi.org/10.1007/978-3-030-29768-8_6

Download citation

Publish with us

Policies and ethics