Skip to main content

Impacts of Climate Change on Himalayan Glaciers: Processes, Predictions and Uncertainties

  • Chapter
  • First Online:
Himalayan Weather and Climate and their Impact on the Environment

Abstract

The glaciers of the Hindu Kush Himalaya region (HKH) produce the water for around 40% of the world’s population. Over the past century these glaciers have lost mass in response to recent climate change and they are predicted to lose more in the future. The precise ways in which glaciers will respond to future climate change are still unknown; many will melt entirely, but some will undergo a transition to debris-covered glaciers which will retard melting, and others will undergo a further transition to form rock glaciers whose response to atmospheric warming and changes in precipitation is as yet unclear. As a result, this chapter stresses the paraglacial response of mountain systems to deglaciation to better understand future glacier recession in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anders AM, Roe GH, Hallet B, Montgomery DR, Finnegan NJ, Putkonen J (2006) Spatial patterns of precipitation and topography in the Himalaya. Geol Soc Am Spec Pap 398:39–53

    Google Scholar 

  • Azam MF, Wagnon P, Berthier E, Vincent C, Fujita K, Kargel JS (2018) Review of the status and mass changes of Himalayan-Karakoram glaciers. J Glaciol 64(243):61–74

    Article  Google Scholar 

  • Azócar GF, Brenning A (2010) Hydrological and geomorphological significance of rock glaciers in the dry Andes, Chile (27°–33°S). Permafr Periglac Process 21(1):42–53

    Article  Google Scholar 

  • Ballantyne CK (2002) Paraglacial geomorphology. Quat Sci Rev 21(18):1935–2017

    Article  Google Scholar 

  • Barnard PL, Owen LA, Finkel RC (2004) Style and timing of glacial and paraglacial sedimentation in a monsoon-influenced high Himalayan environment, the upper Bhagirathi Valley, Garhwal Himalaya. Sediment Geol 165:199–221

    Article  Google Scholar 

  • Barnard PL, Owen LA, Finkel RC (2006a) Quaternary fans and terraces in the Khumbu Himal south of Mount Everest: their characteristics, age and formation. J Geol Soc Lond 163:383–399

    Article  Google Scholar 

  • Barnard PL, Owen LA, Finkel RC, Asahi K (2006b) Landscape response to deglaciation in a high relief, monsoon-influenced alpine environment, Langtang Himal, Nepal. Quat Sci Rev 25:2162–2176

    Article  Google Scholar 

  • Barry RG (2008) Mountain weather and climate. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Benn DI, Kirkbride M, Owen LA, Brazier V (2005) Glaciated valley landsystems. In: Evans DJA (ed) Glacial landsystems. Hodder Education, Oxford, pp 372–406

    Google Scholar 

  • Benn DI, Bolch T, Hands K, Gulley J, Luckman A, Nicholson LI, Quincey D, Thompson S, Toumi R, Wiseman S (2012) Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards. Earth Sci Rev 114(1–2):156–174

    Article  Google Scholar 

  • Bhambri R, Bolch T (2009) Glacier mapping: a review with special reference to the Indian Himalayas. Prog Phys Geogr 33(5):672–704

    Article  Google Scholar 

  • Bhutiyani MR, Kale V, Pawar NJ (2007) Long-term trends in maximum, minimum and mean annual air temperatures across the Northwestern Himalaya during the twentieth century. Clim Chang 85(1–2):159–177

    Article  Google Scholar 

  • Bisht P, Ali SN, Shukla AD, Negi S, Sundriyal YP, Yadava MG, Juyal N (2015) Chronology of late Quaternary glaciation and landform evolution in the upper Dhauliganga valley, (Trans Himalaya), Uttarakhand, India. Quat Sci Rev 129:147–162

    Article  Google Scholar 

  • Bliss A, Hock R, Radic V (2014) Global response of glacier runoff to twenty-first century climate change. J Geophys Res Earth 119:717–730

    Article  Google Scholar 

  • Bolch T, Pieczonka T, Benn DI (2011) Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery. Cryosphere 5(2):349–358

    Article  Google Scholar 

  • Bolch T, Kulkarni A, Kääb A, Huggel C, Paul F, Cogley JG, Frey H, Kargel JS, Fujita K, Scheel M, Bajracharya S, Stoffel M (2012) The state and fate of Himalayan glaciers. Science 336(6079):310

    Article  Google Scholar 

  • Bolch T, Pieczonka T, Mukherjee K, Shea J (2017) Brief communication: glaciers in the Hunza catchment (Karakoram) have been nearly in balance since the 1970s. Cryosphere 11(1):531–539

    Article  Google Scholar 

  • Bonnaventure PP, Lamoureux SF (2013) The active layer: a conceptual review of monitoring, modelling techniques and changes in a warming climate. Prog Phys Geogr 37(3):352–376

    Article  Google Scholar 

  • Bookhagen B, Burbank DW (2006) Topography, relief, and TRMM-derived rainfall variations along the Himalaya. Geophys Res Lett 33(8):L08405

    Article  Google Scholar 

  • Bookhagen B, Burbank DW (2010) Toward a complete Himalayan hydrological budget: spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. J Geophys Res Earth 115(F3):F03019

    Google Scholar 

  • Bosson J-B, Lambiel C (2016) Internal structure and current evolution of very small debris-covered glacier systems located in alpine permafrost environments. Front Earth Sci 4:39

    Article  Google Scholar 

  • Bradley RS, Vuille M, Diaz HF, Vergara W (2006) Threats to water supplies in the tropical Andes. Science 312(5781):1755–1756

    Article  Google Scholar 

  • Brenning A (2005) Geomorphological, hydrological and climatic significance of rock glaciers in the Andes of Central Chile (33–35°S). Permafr Periglac Process 16(3):231–240

    Article  Google Scholar 

  • Brun F, Berthier E, Wagnon P, Kääb A, Treichler D (2017) A spatially resolved estimate of High Mountain Asia glacier mass balances, 2000–2016. Nat Geosci 10(9):668

    Article  Google Scholar 

  • Chaturvedi RK, Joshi J, Jayaraman M, Bala G, Ravindranath NH (2012) Multi-model climate change projections for India under representative concentration pathways. Curr Sci 103(791):802

    Google Scholar 

  • Church M, Ryder JM (1972) Paraglacial sedimentation: a consideration of fluvial processes conditioned by glaciation. Geol Soc Am Bull 83(10):3059–3072

    Article  Google Scholar 

  • Collins DN, Davenport JL, Stoffel M (2013) Climatic variation and runoff from partially-glacierised Himalayan tributary basins of the Ganges. Sci Total Environ 468–469(Supplement):S48–S59

    Article  Google Scholar 

  • Dhar ON, Nandargi S (2004) Rainfall distribution over the Arunachal Pradesh Himalayas. Weather 59(6):155–157

    Article  Google Scholar 

  • Forsythe N, Kilsby CG, Fowler HJ, Archer DR (2012) Assessment of runoff sensitivity in the Upper Indus Basin to interannual climate variability and potential change using MODIS satellite data products. Mt Res Dev 32(1):16–29

    Article  Google Scholar 

  • Fowler HJ, Archer DR (2006) Conflicting signals of climatic change in the Upper Indus Basin. J Clim 19(17):4276–4293

    Article  Google Scholar 

  • Fujita K, Nuimura T (2011) Spatially heterogeneous wastage of Himalayan glaciers. Proc Natl Acad Sci U S A 108(34):14011–14014

    Article  Google Scholar 

  • Gardelle J, Berthier E, Arnaud Y (2012) Slight mass gain of Karakoram glaciers in the early twenty-first century. Nat Geosci 5(5):322–325

    Article  Google Scholar 

  • Gardner AS, Moholdt G, Cogley JG, Wouters B, Arendt A, Wahr JA, Berthier E, Hock R, Pfeffer WT, Kaser G, Ligtenberg SRM, Bolch T, Sharp MJ, Hagen JO, van den Broeke MR, Paul F (2013) A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 340:852–857

    Article  Google Scholar 

  • Gleick P, Palaniappan M (2010) Peak water limits to freshwater withdrawal and use. Proc Natl Acad Sci 107(25):11155–11162

    Article  Google Scholar 

  • Gruber S et al (2016) Review article: inferring permafrost and permafrost thaw in the mountains of the Hindu Kush Himalaya region. Cryosphere Discuss 2016:1–29

    Google Scholar 

  • Haeberli W et al (2006) Permafrost creep and rock glacier dynamics. Permafr Periglac Process 17(3):189–214

    Article  Google Scholar 

  • Harrison S (2009) Climate sensitivity: implications for the response of geomorphological systems to future climate change. Geol Soc Lond, Spec Publ 320(1):257–265

    Article  Google Scholar 

  • Harrison S, Whalley B, Anderson E (2008) Relict rock glaciers and protalus lobes in the British Isles: implications for Late Pleistocene mountain geomorphology and palaeoclimate. J Quat Sci 23(3):287–304

    Article  Google Scholar 

  • Hewitt K (2005) The Karakoram anomaly? Glacier expansion and the ‘elevation effect,’ Karakoram Himalaya. Mt Res Dev 25(4):332–340

    Article  Google Scholar 

  • Hewitt K (2011) Glacier change, concentration, and elevation effects in the Karakoram Himalaya, Upper Indus Basin. Mt Res Dev 31(3):188–200

    Article  Google Scholar 

  • Huss M, Zemp M, Joerg PC, Salzmann N (2014) High uncertainty in 21st century runoff projections from glacierized basins. J Hydrol 510:35–48

    Article  Google Scholar 

  • Immerzeel WW, van Beek LPH, Bierkens MFP (2010) Climate change will affect the Asian water towers. Science 328(5984):1382–1385

    Article  Google Scholar 

  • Immerzeel WW, Beek LPHV, Konz M, Shrestha AB, Bierkens MFP (2012) Hydrological response to climate change in a glacierized catchment in the Himalayas. Clim Chang 110:721–736

    Article  Google Scholar 

  • Immerzeel WW, Pellicciotti F, Bierkens MFP (2013) Rising river flows throughout the twenty-first century in two Himalayan glacierized watersheds. Nat Geosci 6(9):742–745

    Article  Google Scholar 

  • Immerzeel WW, Kraaijenbrink PDA, Shea JM, Shrestha AB, Pellicciotti F, Bierkens MFP, De Jong SM (2014) High-resolution monitoring of Himalayan glacier dynamics using unmanned aerial vehicles. Remote Sens Environ 150:93–103

    Article  Google Scholar 

  • Iturrizaga L (2008) Paraglacial landform assemblages in the Hindukush and Karakoram Mountains. Geomorphology 95:27–47

    Article  Google Scholar 

  • Jacob T, Wahr J, Pfeffer WT, Swenson S (2012) Recent contributions of glaciers and ice caps to sea level rise. Nature 482(7386):514–518

    Article  Google Scholar 

  • Janke JR, Bellisario AC, Ferrando FA (2015) Classification of debris-covered glaciers and rock glaciers in the Andes of central Chile. Geomorphology 241:98–121

    Article  Google Scholar 

  • Jones DB, Harrison S, Anderson K, Selley HL, Wood JL, Betts RA (2017) The distribution and hydrological significance of rock glaciers in the Nepalese Himalaya. Glob Planet Chang 160(2018):123–142

    Google Scholar 

  • Kaab A, Berthier E, Nuth C, Gardelle J, Arnaud Y (2012) Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 488(7412):495–498

    Article  Google Scholar 

  • Kansakar SR, Hannah DM, Gerrard J, Rees G (2004) Spatial pattern in the precipitation regime of Nepal. Int J Climatol 24(13):1645–1659

    Article  Google Scholar 

  • Knight J, Harrison S (2012) The impacts of climate change on terrestrial earth surface systems. Nat Clim Chang 3(1):24

    Article  Google Scholar 

  • Kothawale DR, Rupa Kumar K (2005) On the recent changes in surface temperature trends over India. Geophys Res Lett 32(18):L18714

    Article  Google Scholar 

  • Kothawale DR, Revadekar JV, Rupa Kumar K (2010) Recent trends in premonsoon daily temperature extremes over India. J Earth Syst Sci 119(1):51–65

    Article  Google Scholar 

  • Kraaijenbrink PDA, Bierkens MFP, Lutz AF, Immerzeel WW (2017) Impact of a global temperature rise of 1.5 degrees Celsius on Asia’s glaciers. Nature 549(7671):257

    Article  Google Scholar 

  • Krishna Kumar K, Patwardhan SK, Kulkarni A, Kamala K, Koteswara Rao K, Jones R (2011) Simulated projections for summer monsoon climate over India by a high-resolution regional climate model (PRECIS). Curr Sci 101(3):312–326

    Google Scholar 

  • Kumar KK, Rajagopalan B, Hoerling M, Bates G, Cane M (2006) Unraveling the mystery of Indian monsoon failure during El Niño. Science 314(5796):115–119

    Article  Google Scholar 

  • Kumar KK, Kamala K, Rajagopalan B, Hoerling MP, Eischeid JK, Patwardhan SK, Srinivasan G, Goswami BN, Nemani R (2011) The once and future pulse of Indian monsoonal climate. Clim Dyn 36(11):2159–2170

    Article  Google Scholar 

  • Kumar P, Wiltshire A, Mathison C, Asharaf S, Ahrens B, Lucas-Picher P, Christensen JH, Gobiet A, Saeed F, Hagemann S, Jacob D (2013) Downscaled climate change projections with uncertainty assessment over India using a high resolution multi-model approach. Sci Total Environ 468–469(Supplement(0)):S18–S30

    Article  Google Scholar 

  • Lambrecht A et al (2011) A comparison of glacier melt on debris-covered glaciers in the northern and southern Caucasus. Cryosphere 5(3):525–538

    Article  Google Scholar 

  • Lutz AF, Immerzeel WW, Shrestha AB, Bierkens MFP (2014) Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation. Nat Clim Chang 4(7):587–592

    Article  Google Scholar 

  • Mathison C, Wiltshire A, Dimri AP, Falloon P, Jacob D, Kumar P, Moors E, Ridley J, Siderius C, Stoffel M, Yasunari T (2013) Regional projections of North Indian climate for adaptation studies. Sci Total Environ 468–469(Supplement):S4–S17

    Article  Google Scholar 

  • Mathison C, Wiltshire AJ, Falloon P, Challinor AJ (2015) South Asia riverflow projections and their implications for water resources. Hydrol Earth Syst Sci 19(12):4783–4810

    Article  Google Scholar 

  • Mattson LE, Gardner JS, Young GJ (1993) Ablation on debris covered glaciers: an example from the Rakhiot glacier, Panjab, Himalaya. IAHS Publ 218:289–296

    Google Scholar 

  • Monnier S, Kinnard C (2015) Reconsidering the glacier to rock glacier transformation problem: new insights from the central Andes of Chile. Geomorphology 238:47–55

    Article  Google Scholar 

  • Monnier S, Kinnard C (2017) Pluri-decadal (1955–2014) evolution of glacier–rock glacier transitional landforms in the central Andes of Chile (30–33 ° S). Earth Surf Dyn 5(3):493–509

    Article  Google Scholar 

  • Nandargi S, Dhar ON (2011) Extreme rainfall events over the Himalayas between 1871 and 2007. Hydrol Sci J 56(6):930–945

    Article  Google Scholar 

  • Owen LA, Sharma MC (1998) Rates and magnitudes of paraglacial fan formation in the Garhwal Himalaya: implications for landscape evolution. Geomorphology 26:171–184

    Article  Google Scholar 

  • Owen LA, Benn DI, Derbyshire E, Evans DJA, Mitchell WA, Thomson D, Richardson S, Lloyd M, Holden C (1995) The geomorphology and landscape evolution of the Lahul Himalaya, Northern India. Z Geomorphol 39:145–174

    Google Scholar 

  • Pellicciotti F, Carenzo M, Bordoy R, Stoffel M (2014) Changes in glaciers in the Swiss Alps and impact on basin hydrology: current state of the art and future research. Sci Total Environ 493:1152–1170

    Article  Google Scholar 

  • Pepin N, Bradley RS, Diaz HF, Baraer M, Caceres EB, Forsythe N, Fowler H, Greenwood G, Hashmi MZ, Liu XD, Miller JR, Ning L, Ohmura A, Palazzi E, Rangwala I, Schöner W, Severskiy I, Shahgedanova M, Wang B, Williamson SN, Yang DQ (2015) Elevation-dependent warming in mountain regions of the world. Nat Clim Chang 5(5):424–430

    Article  Google Scholar 

  • Petley DN, Hearn GJ, Hart A, Rosser NJ, Dunning SA, Oven K, Mitchell WA (2007) Trends in landslide occurrence in Nepal. Nat Hazards 43:23–44

    Article  Google Scholar 

  • Rangecroft S, Harrison S, Anderson K (2015) Rock glaciers as water stores in the Bolivian Andes: an assessment of their hydrological importance. Arct Antarct Alp Res 47(1):89–98

    Article  Google Scholar 

  • Ribolini A, Chelli A, Guglielmin M, Pappalardo M (2007) Relationships between glacier and rock glacier in the Maritime Alps, Schiantala Valley, Italy. Quat Res 68(3):353–363

    Article  Google Scholar 

  • Ridley J, Wiltshire A, Mathison C (2013) More frequent occurrence of westerly disturbances in Karakoram up to 2100. Sci Total Environ 468–469(Supplement(0)):S31–S35

    Article  Google Scholar 

  • Rupa Kumar K, Sahai AK, Kumar KK, Patwardhan SK, Mishra PK, Revadekar JV, Kamala K, Pant GB (2006) High-resolution climate change scenarios for India for the 21st century. Curr Sci 90(3):334–345

    Google Scholar 

  • Sakai A, Nakawo M, Fujita K (1998) Melt rate of ice cliffs on the Lirung glacier, Nepal Himalayas, 1996. Bull Glacier Res 16:57–66

    Google Scholar 

  • Sakai A, Takeuchi N, Nakawo M (2000) Role of supraglacial ponds in the ablation process of a debris-covered glacier in the Nepal Himalayas. IAHS Publ 255:199–132

    Google Scholar 

  • Scherler D, Bookhagen B, Strecker MR (2011) Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nat Geosci 4(3):156–159

    Article  Google Scholar 

  • Schmidt S, Nüsser M (2012) Changes of high altitude glaciers from 1969 to 2010 in the Trans-Himalayan Kang Yatze Massif, Ladakh, Northwest India. Arct Antarct Alp Res 44(1):107–121

    Article  Google Scholar 

  • Seong YB, Bishop MP, Bush A, Clendon P, Copland L, Finkel RC, Kamp U, Owen LA, Shroder JF (2009) Landforms and landscape evolution in the Skardu, Shigar and Braldu Valleys, Central Karakoram. Geomorphology 103:251–267

    Article  Google Scholar 

  • Seppi R et al (2015) Current transition from glacial to periglacial processes in the Dolomites (South-Eastern Alps). Geomorphology 228:71–86

    Article  Google Scholar 

  • Shroder JF, Bishop MP, Copland L, Sloan VF (2000) Debris-covered glaciers and rock glaciers in the Nanga Parbat Himalaya, Pakistan. Geogr Ann Ser B 82(1):17–31

    Article  Google Scholar 

  • Sorg A, Huss M, Rohrer M, Stoffel M (2014) The days of plenty might soon be over in glacierized Central Asian catchments. Environ Res Lett 9(10):104018

    Article  Google Scholar 

  • Turner AG, Annamalai H (2012) Climate change and the South Asian summer monsoon. Nat Clim Chang 2(8):587–595

    Article  Google Scholar 

  • Viste E, Sorteberg A (2015) Snowfall in the Himalayas: an uncertain future from a little-known past. Cryosphere 9(3):1147–1167

    Article  Google Scholar 

  • Watson CS, Quincey DJ, Smith MW, Carrivick JL, Rowan AV, James MJ (2017) Quantifying ice cliff evolution with multi-temporal point clouds on the debris-covered Khumbu glacier, Nepal. J Glaciol 63:823–837. https://doi.org/10.1017/jog.2017.47

    Article  Google Scholar 

  • Wiltshire AJ (2014) Climate change implications for the glaciers of the Hindu Kush, Karakoram and Himalayan region. Cryosphere 8(3):941–958

    Article  Google Scholar 

Download references

Acknowledgements

We thank Professor A.P. Dimri for editorial support and to two anonymous reviewers whose contributions significantly improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Harrison .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Parry, L., Harrison, S., Betts, R., Shannon, S., Jones, D.B., Knight, J. (2020). Impacts of Climate Change on Himalayan Glaciers: Processes, Predictions and Uncertainties. In: Dimri, A., Bookhagen, B., Stoffel, M., Yasunari, T. (eds) Himalayan Weather and Climate and their Impact on the Environment . Springer, Cham. https://doi.org/10.1007/978-3-030-29684-1_17

Download citation

Publish with us

Policies and ethics