Skip to main content

Summer Monsoon Variability in the Himalaya Over Recent Centuries

  • Chapter
  • First Online:
Himalayan Weather and Climate and their Impact on the Environment

Abstract

Hydroclimatic variations during the summer monsoon season (June–September) across the Himalaya are examined over the past several hundred years using tree-ring oxygen isotope records. Owing to their strong associations with hydroclimatic variables including precipitation, relative humidity, and the Palmer Drought Severity Index, tree-ring δ18O chronologies from the Himalaya can be used to reconstruct summer monsoon intensity precisely. A regional chronology derived from five local chronologies across the Himalaya shows a significant correlation with Indian summer rainfall data. One of the most noteworthy features of the regional chronology is a drying trend over the past 180 years, indicating that summer monsoon intensity in the Himalayan region has weakened. A declining land–ocean thermal gradient over South Asia seems to be responsible for the weakened summer monsoon. By analyzing spatio-temporal correlations between zonally distributed tree-ring data over the Himalaya, we also explore possible changes in the relative contributions of source water originating in the Arabian Sea and the Bay of Bengal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson DM, Overpeck JT, Gupta AK (2002) Increase in the Asian southwest monsoon during the past four centuries. Science 297:596–599

    Article  Google Scholar 

  • Araguás-Araguás L, Froehlich K, Rozanski K (1998) Stable isotope composition of precipitation over southeast Asia. J Geophys Res 103(D22):28721–28742

    Article  Google Scholar 

  • Ashok K, Guan Z, Yamagata T (2001) Impact of the Indian Ocean dipole on the relationship between the Indian monsoon rainfall and ENSO. Geophys Res Lett 28:4499–4502

    Article  Google Scholar 

  • Barnett TP, Adam JC, Lettenmaier DP (2005) Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438:303–309

    Article  Google Scholar 

  • Borgaonkar HP, Pant GB, Rupa Kumar K (1994) Dendroclimatic reconstruction of summer precipitation at Srinagar, Kashmir, India, since the late-eighteenth century. The Holocene 4(3):299–306

    Article  Google Scholar 

  • Cook ER, Krusic PJ, Jones PD (2003) Dendroclimatic signals in long tree-ring chronologies from the Himalayas of Nepal. Int J Climatol 23:707–732

    Article  Google Scholar 

  • Cook ER et al (2013) Tree-ring reconstructed summer temperature anomalies for temperate East Asia since 800 C.E. Clim Dyn 41(11):2957–2972

    Article  Google Scholar 

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468

    Article  Google Scholar 

  • Emile-Geay J, Cobb KM, Mann ME, Wittenberg AT (2013) Estimating central equatorial Pacific SST variability over the past millennium. Part II: reconstructions and implications. J Clim 26(7):2329–2352

    Article  Google Scholar 

  • Grießinger J, Bräuning A, Helle G, Thomas A, Schleser G (2011) Late Holocene Asian summer monsoon variability reflected by δ18O in tree-rings from Tibetan junipers. Geophys Res Lett 38(3):L03701. https://doi.org/10.1029/2010GL045988

    Article  Google Scholar 

  • Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 dataset. Int J Climatol 34(3):623–642

    Article  Google Scholar 

  • Hughes MK (1992) Dendroclimatic evidence from the western Himalaya. In: Bradley RS, Jones PD (eds) Climate since A.D. 1500. Routledge, London, pp 415–431

    Google Scholar 

  • Immerzeel WW, van Beek LPH, Bierkens MFP (2010) Climate change will affect the Asian water towers. Science 328(5984):1382–1385

    Article  Google Scholar 

  • Kothawale DR, Rajeevan M (2017) Monthly, seasonal and annual rainfall time series for all-India, homogeneous regions and meteorological subdivisions: 1871–2016. IITM research report no. RR-138

    Google Scholar 

  • Krusic PJ et al (2015) Six hundred thirty-eight years of summer temperature variability over the Bhutanese Himalaya. Geophys Res Lett 42(8):2988–2994

    Article  Google Scholar 

  • Kumar KK, Rajagopalan B, Cane MA (1999) On the weakening relationship between the Indian monsoon and ENSO. Science 284(5423):2156–2159

    Article  Google Scholar 

  • Kumar KK, Rajagopalan B, Hoerling M, Bates G, Cane M (2006) Unraveling the mystery of Indian monsoon failure during El Niño. Science 314(5796):115–119

    Article  Google Scholar 

  • Kurita N, Ichiyanagi K, Matsumoto J, Yamanaka MD, Ohata T (2009) The relationship between the isotopic content of precipitation and the precipitation amount in tropical regions. J Geochem Explor 102(3):113–122

    Article  Google Scholar 

  • Liu X et al (2013) A 400-year tree-ring δ18O chronology for the southeastern Tibetan Plateau: implications for inferring variations of the regional hydroclimate. Glob Planet Chang 104:23–33

    Article  Google Scholar 

  • Liu X et al (2014) A shift in cloud cover over the southeastern Tibetan Plateau since 1600: evidence from regional tree-ring δ18O and its linkages to tropical oceans. Quat Sci Rev 88(0):55–68

    Article  Google Scholar 

  • May W (2002) Simulated changes of the Indian summer monsoon under enhanced greenhouse gas conditions in a global time-slice experiment. Geophys Res Lett 29(7). https://doi.org/10.1029/2001GL013808

  • McCarroll D, Loader NJ (2004) Stable isotopes in tree rings. Quat Sci Rev 23:771–801

    Article  Google Scholar 

  • McGregor S, Timmermann A, Timm O (2010) A unified proxy for ENSO and PDO variability since 1650. Clim Past 6(1):1–17

    Article  Google Scholar 

  • Meehl GA, Washington WM (1993) South Asian summer monsoon variability in a model with doubled atmospheric carbon dioxide concentration. Science 260(5111):1101–1104

    Article  Google Scholar 

  • Midhun M, Ramesh R (2016) Validation of δ18O as a proxy for past monsoon rain by multi-GCM simulations. Clim Dyn 46(5):1371–1385

    Article  Google Scholar 

  • Parthasarathy B, Monot AA, Kothawale DR (1994) All-India monthly and seasonal raifall series: 1871–1993. Theor Appl Climatol 49:217–224

    Article  Google Scholar 

  • Rasmusson EM, Carpenter TH (1983) The relationship between eastern equatorial Pacific sea surface temperatures and rainfall over India and Sri Lanka. Mon Weather Rev 111:517–528

    Article  Google Scholar 

  • Roden JS, Lin G, Ehleringer JR (2000) A mechanistic model for interpretation of hydrogen and oxygen isotope ratios in tree-ring cellulose. Geochim Cosmochim Acta 64(1):21–35

    Article  Google Scholar 

  • Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns associated with the El Niño/southern oscillation. Mon Weather Rev 115:1606–1626

    Article  Google Scholar 

  • Roxy MK et al (2015) Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land-sea thermal gradient. Nat Commun 6:7423

    Article  Google Scholar 

  • Sano M, Furuta F, Kobayashi O, Sweda T (2005) Temperature variations since the mid-18th century for western Nepal, as reconstructed from tree-ring width and density of Abies spectabilis. Dendrochronologia 23:83–92

    Article  Google Scholar 

  • Sano M, Ramesh R, Sheshshayee M, Sukumar R (2012) Increasing aridity over the past 223 years in the Nepal Himalaya inferred from a tree-ring δ18O chronology. The Holocene 22(7):809–817

    Article  Google Scholar 

  • Sano M et al (2013) May–September precipitation in the Bhutan Himalaya since 1743 as reconstructed from tree ring cellulose δ18O. J Geophys Res Atmos 118(15):8399–8410

    Article  Google Scholar 

  • Sano M et al (2017) Moisture source signals preserved in a 242-year tree-ring δ18O chronology in the western Himalaya. Glob Planet Chang 157:73–82

    Article  Google Scholar 

  • Schneider U et al (2011) GPCC full data reanalysis version 6.0 at 0.5°: monthly land-surface precipitation from rain-gauges built on GTS-based and historic data. https://doi.org/10.5676/DWD_GPCC/FD_M_V6_050

  • Sengupta S, Sarkar A (2006) Stable isotope evidence of dual (Arabian Sea and Bay of Bengal) vapour sources in monsoonal precipitation over north India. Earth Planet Sci Lett 250(3–4):511–521

    Article  Google Scholar 

  • Shi C et al (2012) Reconstruction of southeast Tibetan Plateau summer climate using tree ring δ18O: moisture variability over the past two centuries. Clim Past 8(1):205–213

    Article  Google Scholar 

  • Shi F et al (2015) A multi-proxy reconstruction of spatial and temporal variations in Asian summer temperatures over the last millennium. Clim Chang 131(4):663–676

    Article  Google Scholar 

  • Shukla J, Paolino DA (1983) The Southern Oscillation and long-range forecasting of the summer monsoon rainfall over India. Mon Weather Rev 111:1830–1837

    Article  Google Scholar 

  • Singh J, Park W-K, Yadav RR (2006) Tree-ring-based hydrological records for western Himalaya, India, since A.D. 1560. Clim Dyn 26:295–303

    Article  Google Scholar 

  • Sinha A et al (2015) Trends and oscillations in the Indian summer monsoon rainfall over the last two millennia. Nat Commun 6:6309

    Article  Google Scholar 

  • Sternberg LSLOR (2009) Oxygen stable isotope ratios of tree-ring cellulose: the next phase of understanding. New Phytol 181(3):553–562

    Article  Google Scholar 

  • Tierney JE et al (2015) Tropical sea surface temperatures for the past four centuries reconstructed from coral archives. Paleoceanography 30(3):226–252

    Article  Google Scholar 

  • Treydte KS et al (2006) The twentieth century was the wettest period in northern Pakistan over the past millennium. Nature 440:1179–1182

    Article  Google Scholar 

  • van der Schrier G, Barichivich J, Briffa KR, Jones PD (2013) A scPDSI-based global data set of dry and wet spells for 1901–2009. J Geophys Res Atmos 118(10):4025–4048

    Article  Google Scholar 

  • Viviroli D, Dürr HH, Messerli B, Meybeck M, Weingartner R (2007) Mountains of the world, water towers for humanity: typology, mapping, and global significance. Water Resour Res 43(7):W07447

    Article  Google Scholar 

  • Wang B, Ding Q (2006) Changes in global precipitation over the past 56 years. Geophys Res Lett 33:L06711. https://doi.org/10.1029/2005GL025347

    Article  Google Scholar 

  • Wang J, Yang B, Ljungqvist FC (2015) A millennial summer temperature reconstruction for the eastern Tibetan Plateau from tree-ring width. J Clim 28(13):5289–5304

    Article  Google Scholar 

  • Wernicke J, Grießinger J, Hochreuther P, Bräuning A (2015) Variability of summer humidity during the past 800 years on the eastern Tibetan Plateau inferred from δ18O of tree-ring cellulose. Clim Past 11(2):327–337

    Article  Google Scholar 

  • White JWC, Cook ER, Lawrence JR, Broecker WS (1985) The D/H ratios of sap in trees: implications for water sources and tree ring D/H ratios. Geochim Cosmochim Acta 49:237–246

    Article  Google Scholar 

  • Wigley TML, Briffa KR, Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23:201–213

    Article  Google Scholar 

  • Xu H, Hong Y, Hong B (2012) Decreasing Asian summer monsoon intensity after 1860 AD in the global warming epoch. Clim Dyn 39(7–8):2079–2088

    Article  Google Scholar 

  • Xu C et al (2018) Decreasing Indian summer monsoon on the northern Indian sub-continent during the last 180 years: evidence from five tree-ring cellulose oxygen isotope chronologies. Clim Past 14(5):653–664

    Article  Google Scholar 

  • Yadav RR, Misra KG, Yadava AK, Kotlia BS, Misra S (2015) Tree-ring footprints of drought variability in last ∼300 years over Kumaun Himalaya, India and its relationship with crop productivity. Quat Sci Rev 117:113–123

    Article  Google Scholar 

  • Yadav RR et al (2017) Recent wetting and glacier expansion in the northwest Himalaya and Karakoram. Sci Rep 7(1):6139

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Sano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sano, M., Xu, C., Dimri, A.P., Ramesh, R. (2020). Summer Monsoon Variability in the Himalaya Over Recent Centuries. In: Dimri, A., Bookhagen, B., Stoffel, M., Yasunari, T. (eds) Himalayan Weather and Climate and their Impact on the Environment . Springer, Cham. https://doi.org/10.1007/978-3-030-29684-1_14

Download citation

Publish with us

Policies and ethics