Skip to main content

Dielectric Properties of Acacia Wood Bio-composites

  • Chapter
  • First Online:
Acacia Wood Bio-composites

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

In this chapter, pure PLA, PHA, PLA/PHA (1:1 ratio of PLA/PHA), and NCHB-PLA/PHA (1 wt% of NCHB; 1:1 ratio of PLA/PHA) with addition of different fiber loadings (i.e. 5 wt%, 10 wt%, 15 wt% and 20 wt%) are fabricated. It is found that the addition of Acacia wood (AW), caused an inrease in the dielectric constant, dissipation factor and loss factor. The highest optimum value was obtained at 20 wt% fiber loadings. Addition of AW fiber caused an increase in the dielectric constant, dissipation factor and loss factor. Chemical modification on the AW fiber were also done and resulted, which resulted in the increase of hydrophobicity of the modified AW fiber. Polymer blend created better interlocking, reduce the formation of bubble/void, which create low dielectrical properties than PLA and PHA itself. Addition of NCHB stabilizes the dielectric constant, dissipation factor and loss factor, which led to a smoother data, when compared to other results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ASTM D150-11. (2011). Standard Test Methods for AC Loss Characteristics and Permittivity (Dielectric Constant) of Solid Electrical Insulation. West Conshohocken, PA: ASTM International.

    Google Scholar 

  • ASTM D6400-12. (2012). Standard Specification for Labeling of Plastics Designed to be Aerobically Composted in Municipal or Industrial Facilities. West Conshohocken, PA: ASTM International.

    Google Scholar 

  • ASTM D6866-16. (2016). Standard Test Methods for Determining the Biobased Content of Solid, Liquid, and Gaseous Samples Using Radiocarbon Analysis. West Conshohocken, PA: ASTM International.

    Google Scholar 

  • ASTM E41-92. (2010). Terminology Relating to Conditioning. West Conshohocken, PA: ASTM International.

    Google Scholar 

  • Chand, N., & Jain, D. (2005). Effect of sisal fibre orientation on electrical properties of sisal fibre reinforced epoxy composites. Composites Part A Applied Science and Manufacturing, 36(5), 594–602.

    Article  Google Scholar 

  • Haseena, A. P., Unnikrishnan, G., & Kalaprasad, G. (2007). Dielectric properties of short sisal/coir hybrid fibre reinforced natural rubber composites. Composite Interfaces, 14(7–9), 763–786.

    Article  CAS  Google Scholar 

  • Jacob, M., Varughese, K. T., & Thomas, S. (2006). Dielectric characteristics of sisal-oil palm hybrid biofibre reinforced natural rubber biocomposites. Journal of Materials Science, 41(17), 5538–5547.

    Article  CAS  Google Scholar 

  • Joseph, S., & Thomas, S. (2008). Electrical properties of banana fiber-reinforced phenol formaldehyde composites. Journal of Applied Polymer Science, 109(4), 256–263.

    Article  CAS  Google Scholar 

  • Logan, A. F., & Balodis, V. (1982). Pulping and papermaking characteristics of plantation-grown acacia mangium from Sabah. Malaysian Forester, 45(1), 217–236.

    Google Scholar 

  • Markiewcz, E., Paukszta, D., & Borysiak, S. (2009). Dielectric properties of lignocellulosic materials—Polypropylene composites. Materials Science-Poland, 27(2), 582–594.

    Google Scholar 

  • Mehta, N. M., & Parsania, P. H. (2006). Fabrication and evaluation of some mechanical and electrical properties of jute-biomass based hybrid composites. Journal of Applied Polymer Science, 100(3), 1754–1758.

    Article  CAS  Google Scholar 

  • National Research Council. (1983). Magium and other fast growing acacias for the humid tropics. Washington, DC: Natural Academic Press.

    Google Scholar 

  • Parida, C., Dash, S. K., Pradhan, C., & Das, S. C. (2015). Dielectric response of luffa fiber—Reinforced resorcinol formaldehyde composites. American Journal of Materials Science, 5(1), 1–8.

    Google Scholar 

  • Peh, T. B., Khoo, K. C., & Lee, T. W. (1982). Sulphate pulping of acacia mangium and cleistopholis glauca from Sabah. Malaysian Forester, 45(1), 404–418.

    Google Scholar 

  • Peh, T. B., & Khoo, K. C. (1984). Timber properties of acacia mangium, gmelina arborea, and paraserianthes falcataria and their utilization aspects. Malaysian Forester, 47(1), 285–303.

    Google Scholar 

  • Razali, A. K., & Kuo, H. S. (1983). Properties of particleboard manufactured from fast growing plantation species. In Proceedings of Symposium on Recent Development in Tree Plantations of Humid/Subhumid Tropics of Asia (Vol. 1, no. 1, pp. 685–691).

    Google Scholar 

  • Singha, A. S., Rana, A. K., & Jarial, R. K. (2013). Mechanical, dielectric, and thermal properties of grewia optiva fibers reinforced unsaturated polyester matrix based composites. Materials & Designs, 56(1), 924–934.

    Article  Google Scholar 

  • Sining, U. (1989). Some wood properties of acacia mangium wild, from three provenances grown in Sabah (Thesis). Universiti Pertanian Malaysia.

    Google Scholar 

  • Sreekumar, P. A., Saiter, J. M., Joseph, K., Unnikrishnan, G., & Thomas, S. (2012). Electrical properties of short sisal fiber reinforced polyester composites fabricated by resin transfer molding. Composites Part A Applied Science and Manufacturing, 43(3), 507–511.

    Article  CAS  Google Scholar 

  • Thakur, Y., Zhang, B., Dong, R., Lu, W., Iacob, C., Runt, J., et al. (2017). Generating high dielectric constant blends from lower dielectric constant dipolar polymers using nanostructure engineering. Nano Energy, 23(1), 73–79.

    Article  Google Scholar 

  • Wang, Q., Sasaki, H., & Razali, A. K. (1989). Properties of fast growing timbers from plantation thinning in Sabah. Wood Research and Technical Note, 25(1), 45–51.

    Google Scholar 

Download references

Acknowledgements

The authors would like to Universiti Malaysia Sarawak and Swinburne University of Technology Sarawak Campus for the collaboration efforts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Rezaur Rahman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bakri, M.K.B., Nyuk Khui, P.L., Rahman, M.R., Hamdan, S., Jayamani, E., Kakar, A. (2019). Dielectric Properties of Acacia Wood Bio-composites. In: Rahman, M. (eds) Acacia Wood Bio-composites. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-29627-8_8

Download citation

Publish with us

Policies and ethics