Skip to main content

A Formally Verified Abstract Account of Gödel’s Incompleteness Theorems

  • Conference paper
  • First Online:
Automated Deduction – CADE 27 (CADE 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11716))

Included in the following conference series:

Abstract

We present an abstract development of Gödel’s incompleteness theorems, performed with the help of the Isabelle/HOL theorem prover. We analyze sufficient conditions for the theorems’ applicability to a partially specified logic. In addition to the usual benefits of generality, our abstract perspective enables a comparison between alternative approaches from the literature. These include Rosser’s variation of the first theorem, Jeroslow’s variation of the second theorem, and the Świerczkowski–Paulson semantics-based approach. As part of our framework’s validation, we upgrade Paulson’s Isabelle proof to produce a mechanization of the second theorem that does not assume soundness in the standard model, and in fact does not rely on any notion of model or semantic interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ammon, K.: An automatic proof of Gödel’s incompleteness theorem. Artif. Intell. 61(2), 291–306 (1993)

    Article  MathSciNet  Google Scholar 

  2. Auerbach, D.: Intensionality and the Gödel theorems. Philos. Stud. Int. J. Philos. Anal. Tradit. 48(3), 337–351 (1985)

    Google Scholar 

  3. Blanchette, J.C., Popescu, A., Traytel, D.: Unified classical logic completeness. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI), vol. 8562, pp. 46–60. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08587-6_4

    Chapter  Google Scholar 

  4. Boolos, G.: The Logic of Provability. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  5. Buldt, B.: The scope of Gödel’s first incompleteness theorem. Log. Univers. 8(3), 499–552 (2014)

    Article  MathSciNet  Google Scholar 

  6. Bundy, A., Giunchiglia, F., Villafiorita, A., Walsh, T.: An incompleteness theorem via abstraction. Technical report, Istituto per la Ricerca Scientifica e Tecnologica, Trento (1996)

    Google Scholar 

  7. Carnap, R.: Logische syntax der sprache. Philos. Rev. 44(4), 394–397 (1935)

    Article  Google Scholar 

  8. Davis, M.: The Undecidable: Basic Papers on Undecidable Propositions, Unsolvable Problems, and Computable Functions. Dover Publication, Mineola (1965)

    MATH  Google Scholar 

  9. Diaconescu, R.: Institution-Independent Model Theory, 1st edn. Birkhäuser, Basel (2008)

    MATH  Google Scholar 

  10. Feferman, S., Dawson Jr., J.W., Kleene, S.C., Moore, G.H., Solovay, R.M., van Heijenoort, J. (eds.): Kurt Gödel: Collected Works. Vol. 1: Publications 1929–1936. Oxford University Press, Oxford (1986)

    Google Scholar 

  11. Fiore, M.P., Plotkin, G.D., Turi, D.: Abstract syntax and variable binding. In: Logic in Computer Science (LICS) 1999, pp. 193–202. IEEE Computer Society (1999)

    Google Scholar 

  12. Gabbay, M.J., Mathijssen, A.: Nominal (universal) algebra: equational logic with names and binding. J. Log. Comput. 19(6), 1455–1508 (2009)

    Article  MathSciNet  Google Scholar 

  13. Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte für Mathematik und Physik 38(1), 173–198 (1931)

    Article  MathSciNet  Google Scholar 

  14. Goguen, J.A., Burstall, R.M.: Institutions: abstract model theory for specification and programming. J. ACM 39(1), 95–146 (1992)

    Article  MathSciNet  Google Scholar 

  15. Harrison, J.: HOL light proof of Gödel’s first incompleteness theorem. http://code.google.com/p/hol-light/, directory Arithmetic

  16. Hilbert, D., Bernays, P.: Grundlagen der Mathematik, vol. II. Springer, Heidelberg (1939)

    MATH  Google Scholar 

  17. Jeroslow, R.G.: Redundancies in the Hilbert-Bernays derivability conditions for Gödel’s second incompleteness theorem. J. Symb. Log. 38(3), 359–367 (1973)

    Article  Google Scholar 

  18. Kaliszyk, C., Urban, J.: HOL(y)Hammer: online ATP service for HOL light. Math. Comput. Sci. 9(1), 5–22 (2015)

    Article  Google Scholar 

  19. Kikuchi, M., Kurahashi, T.: Generalizations of Gödel’s incompleteness theorems for \(\sum \) n-definable theories of arithmetic. Rew. Symb. Logic 10(4), 603–616 (2017)

    Article  Google Scholar 

  20. Kossak, R.: Mathematical Logic. SGTP, vol. 3. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-97298-5

    Book  MATH  Google Scholar 

  21. Kunčar, O., Popescu, A.: A consistent foundation for Isabelle/HOL. In: Urban, C., Zhang, X. (eds.) ITP 2015. LNCS, vol. 9236, pp. 234–252. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22102-1_16

    Chapter  Google Scholar 

  22. Kunčar, O., Popescu, A.: Comprehending Isabelle/HOL’s consistency. In: Yang, H. (ed.) ESOP 2017. LNCS, vol. 10201, pp. 724–749. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54434-1_27

    Chapter  Google Scholar 

  23. Löb, M.: Solution of a problem of Leon Henkin. J. Symb. Log. 20(2), 115–118 (1955)

    Article  MathSciNet  Google Scholar 

  24. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9

    Book  MATH  Google Scholar 

  25. O’Connor, R.: Essential incompleteness of arithmetic verified by Coq. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 245–260. Springer, Heidelberg (2005). https://doi.org/10.1007/11541868_16

    Chapter  Google Scholar 

  26. Paulson, L.C.: A machine-assisted proof of Gödel’s incompleteness theorems for the theory of hereditarily finite sets. Rew. Symb. Logic 7(3), 484–498 (2014)

    Article  Google Scholar 

  27. Paulson, L.C.: A mechanised proof of Gödel’s incompleteness theorems using Nominal Isabelle. J. Autom. Reason. 55(1), 1–37 (2015)

    Article  Google Scholar 

  28. Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer, a practical link between automatic and interactive theorem provers. In: The 8th International Workshop on the Implementation of Logics, IWIL 2010, Yogyakarta, Indonesia, 9 October 2011, pp. 1–11 (2010)

    Google Scholar 

  29. Popescu, A., Roşu, G.: Term-generic logic. Theor. Comput. Sci. 577, 1–24 (2015)

    Article  MathSciNet  Google Scholar 

  30. Popescu, A., Trayel, D.: A formally verified abstract account of Gödel’s incompleteness theorems (extended report) (2019). https://bitbucket.org/traytel/abstract_incompleteness/downloads/report.pdf

  31. Popescu, A., Traytel, D.: Formalization associated with this paper (2019). https://bitbucket.org/traytel/abstract_incompleteness/

  32. Quaife, A.: Automated proofs of Löb’s theorem and Gödel’s two incompleteness theorems. J. Autom. Reason. 4(2), 219–231 (1988)

    Article  MathSciNet  Google Scholar 

  33. Raatikainen, P.: Gödel’s incompleteness theorems. In: The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University (2018)

    Google Scholar 

  34. Schlichtkrull, A., Blanchette, J.C., Traytel, D., Waldmann, U.: Formalizing Bachmair and Ganzinger’s ordered resolution prover. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR 2018. LNCS (LNAI), vol. 10900, pp. 89–107. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94205-6_7

    Chapter  Google Scholar 

  35. Shankar, N.: Metamathematics, Machines, and Gödel Proof. Cambridge University Press, Cambridge (1994)

    Book  Google Scholar 

  36. Sieg, W.: Elementary proof theory. Technical report, Institute for Mathematical Studies in the Social Sciences, Stanford (1978)

    Google Scholar 

  37. Sieg, W., Field, C.: Automated search for Gödel’s proofs. Ann. Pure Appl. Logic 133(1–3), 319–338 (2005)

    Article  MathSciNet  Google Scholar 

  38. Smith, P.: An Introduction to Gödel’s Incompleteness Theorems. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  39. Smorynski, C.: The incompleteness theorems. In: Barwise, J. (ed.) Handbook of Mathematical Logic, pp. 821–865. North-Holland, Amsterdam (1977)

    Chapter  Google Scholar 

  40. Świerczkowski, S.: Finite sets and Gödel incompleteness theorems. Diss. Math. 422, 1–58 (2003)

    MATH  Google Scholar 

  41. Tarski, A., Mostowski, A., Robinson, R.: Undecidable Theories. Studies in Logic and the Foundations of Mathematics. North-Holland, Amsterdam (1953). 3rd edn. 1971

    Google Scholar 

Download references

Acknowledgments

We thank Bernd Buldt for his patient explanations on material in his monograph, and the reviewers for insightful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrei Popescu or Dmitriy Traytel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Popescu, A., Traytel, D. (2019). A Formally Verified Abstract Account of Gödel’s Incompleteness Theorems. In: Fontaine, P. (eds) Automated Deduction – CADE 27. CADE 2019. Lecture Notes in Computer Science(), vol 11716. Springer, Cham. https://doi.org/10.1007/978-3-030-29436-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29436-6_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29435-9

  • Online ISBN: 978-3-030-29436-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics