Skip to main content

Metal-Organic Frameworks for Carbon Dioxide Capture

  • Chapter
  • First Online:
Sustainable Agriculture Reviews 38

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 38))

Abstract

The ever increasing amounts of CO2 in the atmosphere calls for immediate action and required remediation. A number of techniques for CO2 capture have been used for quite some time including amine based scrubbing, absorption, membranes, zeolites etc. Metal organic frameworks (MOFs) have come across as worthy candidates for carbon dioxide capture, storage and transport on account of its large surface area, large pore volume and structures that can be tuned as per requirement. They exhibit properties superior to those of zeolites and other composites. This chapter deals with the use of metal organic frameworks (MOFs) as promising agents for carbon dioxide capture. A number of MOFs have been presented along with a description of their superior properties. Zirconium based MOF, it’s characterization and demonstration of its high uptake capacity has been presented. Metal organic framework based derivatives obtained by pyrolysis and their performance as compared to the parent MOF is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BBC :

4,4′,4′′-(benzene-1,3,5triyl-tris(benzene-4,1 diyl))tribenzoate)

BDC :

1, 4-Benzene dicarboxylic acid

BPEE :

1,2 bipyridylethene)

BPTC :

1,1′-biphenyl-3,3′,5,5′-tetracarboxylate

BTC :

1,3,5-benzenetricarboxylate

BTE :

4,4′,4′′-(benzene-1,3,5-triyl-tris(ethyne-2,1-diyl)) tribenzoate

CNF:

Carbon nano fiber

CNS :

Carbon nitride sheets

DMF:

N, N-dimethyl foramide,

DMS :

Dimethyl Sulphate

DOBDC :

2,5-dioxido-1,4-benzenedicarboxylate

GNP :

Graphene nano plates

GO :

Graphene oxide

HKUST :

Hong Kong University of Science and Technology

MEA :

Monoethanolamine

MIL :

Materials of the Institut Lavoisier

MOF:

Metal organic framework

PSA :

Pressure swing adsorption

SBU :

Secondary Building Units

TEA :

triethylamine

TEOA:

triethanolamine

TGA :

Thermo-gravimetric analysis

UiO :

University of Oslo

XRD :

X-Ray Diffraction

ZIF :

Zeolitic Imidazolate Frameworks

References

  • Abid HR, Pham GH, Ang HM, Tade MO, Wang S (2012) Adsorption of CH4 and CO2 on Zr-metal organic frameworks. J Colloid Interface Sci 366(1):120–124. https://doi.org/10.1016/j.jcis.2011.09.060. PMID: 22014395

    Article  CAS  PubMed  Google Scholar 

  • Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O’Keeffe M, Yaghi OM (2008) High-throughput synthesis of zeoliticimidazolate frameworks and application to CO2 capture. Science 319(5865):939–943

    Article  CAS  Google Scholar 

  • Bennett TD, Goodwin AL, Dove MT, Keen DA, Tucker MG, Barney ER, Soper AK, Bithell EG, Tan J-C, Cheetham AK (2010) Structure and properties of an amorphous metal-organic framework. Phys Rev Lett 104:115503

    Article  Google Scholar 

  • Britt D, Furukawa H, Wang B, Glover TG, Yaghi OM (2010) Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites. Proc Natl Acad Sci 106(49):20637–20640

    Article  Google Scholar 

  • Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud KP (2008) A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc 130(42):13850–13851

    Article  Google Scholar 

  • Chavan S, Vitillo JG, Uddin MJ, Bonino F, Lamberti C, Groppo E et al (2010) Functionalization of UiO-66 metal-organic framework and highly cross-linked polystyrene with Cr(CO)(3): in situ formation, stability, and photoreactivity. Chem Mater 22(16):4602–4611

    Article  CAS  Google Scholar 

  • Chavan S, Vitillo JG, Gianolio D, Zavorotynska O, Civalleri B, Jakobsen S, Nilsen MH, Valenzano L, Lamberti C, Lillerud KP, Bordiga S (2012) H2 storage in isostructural uio-67 and uio-66 mofs. Phys Chem Chem Phys 14(1614–1626)

    Article  CAS  Google Scholar 

  • Chui SSY, Lo SMF, Charmant JPH, Orpen AG, Williams ID (1999) A chemically functionalizablenanoporous material[Cu3(TMA)2(H2O)3]. Science 283:1148–1150

    Article  CAS  Google Scholar 

  • Gomes Silva C, Luz I, Llabrés i, Xamena FX, Corma A, García H (2010) Water stable Zr–benzenedicarboxylate metal–organic frameworks as photocatalysts for hydrogen generation. Chem Eur J 16:11133–11138

    Article  Google Scholar 

  • IEA Greenhouse Gas R&D Programme (2005) In: Dillon DJ, White V, Allam R, Wall RA, Gibbins J (eds) Oxy-combustion processes for CO2 capture from power plant. IEA Greenhouse Gas R & D Programme, CheltenhamAll rights reserved to Mitsui Babcock Energy Limited

    Google Scholar 

  • IEA Greenhouse Gas R&D Programme (IEA GHG) (2007) CO2 capture ready plants, 2007/4, May 2007

    Google Scholar 

  • Kandiah M, Nilsen MH, Usseglio S, SørenJakobsen UO, Tilset M, CherifLarabi EAQ, Bonino F, PetterLillerud K (2010) Synthesis and Stability of tagged UiO-66 Zr-MOFs. Chem Mater 22(24):6632–6640

    Article  CAS  Google Scholar 

  • Kim HR, Yoon TU, Kim SI, An J, Bae Y-S, Lee CY (2017) Beyond pristine MOFs: carbon dioxide capture by metal-organic frameworks (MOFs)-derived porous carbon materials. RSC Adv 7(3):1266–1270

    Article  CAS  Google Scholar 

  • Li H, Eddaoudi M, O'Keeffe M, Yaghi OM (1999) Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402(6759):276–279

    Article  CAS  Google Scholar 

  • Li Y, Liang F, Bux H, Yang W, Caro J (2010) Zeoliticimidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation. J Membr Sci 354(1–2):48–54

    Article  CAS  Google Scholar 

  • Lochan RC, Khaliullin RZ, Head-Gordon M (2008) Interaction of molecular hydrogen with open transition metal centers for enhanced binding in metal-organic frameworks: a computational study. Inorg Chem 47(10):4032–4044

    Article  CAS  Google Scholar 

  • Loiseau T, Serre C, Huguenard C, Fink G, Taulelle F, Henry M, Bataille T, Férey G (2004) A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. Chem Eur J 10:1373–1382

    Article  CAS  Google Scholar 

  • Millward AR, Yaghi OM (2005) Metal−organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J Am Chem Soc 127:17998–17999

    Article  CAS  Google Scholar 

  • Nguyen LT, Ky KL, Nam TS (2012) A zeolite imidazolate framework ZIF-8 catalyst for friedel-crafts acylation. Chin J Catal 33:688–696

    Article  CAS  Google Scholar 

  • Nonhebel G (1936) A commercial plant for removal of smoke and oxides of sulphur from flue gases. Trans Faraday Soc 32:1291–1296, The Royal Society of Chemistry, 0014–7672

    Article  CAS  Google Scholar 

  • Park KS, Ni Z, Côté AP, Choi JY, Huang R, Uribe-Romo FJ, Chae HK, O’Keeffe M, Yaghi OM (2006) Exceptional chemical and thermal stability of zeoliticimidazolate frameworks. Proc Natl Acad Sci 103(27):10186–10191

    Article  CAS  Google Scholar 

  • Peng L et al (2014) Highly mesoporous metal-organic framework assembled in a switchable solvent. Nat Commun 5:4465

    Article  CAS  Google Scholar 

  • Phan A, Doonan CJ, Uribe-Romo FJ, Knobler CB, OKeeffe M, Yaghi OM (2010) Synthesis, structure, and carbon dioxide capture properties of zeoliticimidazolate frameworks. Acc Chem Res 43(1):58–67

    Article  CAS  Google Scholar 

  • Rao AB, Rubin ES (2002) A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control. Environ Sci Technol 36(20):4467–4475

    Article  CAS  Google Scholar 

  • Ravikovitch PI, Vishnyakov A, Russo R, Neimark AV (2000) Unified approach to pore size characterization of microporous carbonaceous materials from N2, Ar, and CO2 adsorption isotherms. Langmuir 16(5):2311–2320

    Article  CAS  Google Scholar 

  • Rochelle GT (2009) Amine scrubbing for CO2 capture. Science 325:1652–1654

    Article  CAS  Google Scholar 

  • Rowsell JLC, Yaghi OM (2004) Metal-organic frameworks: a new class of porous materials. Microporous Mesoporous Mater 73:3–14

    Article  CAS  Google Scholar 

  • R. Shao, A. Stangeland Amines used in CO2 capture – health and environmental impacts., First online edition, 2009

    Google Scholar 

  • Song Q, Nataraj SK, Roussenova MV, Tan JC, Hughes DJ, Li W, Bourgoin P, Alam MA, Cheetham AK, Al-Muhtaseb SA, Sivaniah E (2012) Zeoliticimidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation. Energy Environ Sci 5:8359–8369

    Article  CAS  Google Scholar 

  • Tran UPN, Le KKA, Phan NTS (2011) Expanding applications of metal−organic frameworks: zeolite imidazolate framework ZIF-8 as an efficient heterogeneous catalyst for the Knoevenagel reaction. ACS Catal 1(2):120–127

    Article  CAS  Google Scholar 

  • Valenzano L, Civalleri B, Chavan S, Bordiga S, Lamberti C, Nilsen MH, Jakobsen S, Lillerud KP (2011) Disclosing the complex structure of UiO-66 metal organic framework: a synergic combination of experiment and theory. Chem Mater 23(7):1700–1718

    Article  CAS  Google Scholar 

  • Venkataraman D, Lee S, Zhang J, Moore JS (1994) An organic solid with wide channels based on hydrogen bonding between macrocycles. Nature 371(6498):591–593

    Article  CAS  Google Scholar 

  • Vermoortele F, Ameloot R, Vimont A, Serre C, De Vos D (2011) An amino-modified zrterephthalate metalorganic framework as an acidbase catalyst for cross-aldol condensation. Chem Commun 47:1521–1523

    Article  CAS  Google Scholar 

  • Wu H, Reali RS, Smith DA, Trachtenberg MC, Li J (2010) Highly selective CO2 capture by a flexible microporous metal–organic framework (MMOF) material. Chem Eur J 16:13951–13954

    Article  CAS  Google Scholar 

  • Yaghi OM, Li H (1995) Hydrothermal synthesis of a metal-organic framework containing large rectangular channels. J Am Chem Soc 117(41):10401–10402

    Article  CAS  Google Scholar 

  • Yang QY, Wiersum A, Hervé J, Guillerm V, Llewellyn PL, Maurin G (2011) Understanding the thermodynamic and kinetic behavior of the CO2/CH4 gas mixture within the porous zirconium terephthalate UiO-66(Zr): a joint experimental and modeling approach. J Phys Chem C 115(28):13768–13774

    Article  CAS  Google Scholar 

  • Zhao P, Lampronti GI, Lloyd GO, Wharmby MT, SébastienFacq AKC, Redfern SAT (2014) Phase transitions in zeolitic imidazolate framework 7: the importance of framework flexibility and guest-induced instability. Chem Mater 26(5):1767–1769

    Article  CAS  Google Scholar 

  • Zhu Q-L, Xu Q (2014) Metal–organic framework composites. Chem Soc Rev 43:5468–5512

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Shanmuga Priya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mangal, S., Shanmuga Priya, S. (2019). Metal-Organic Frameworks for Carbon Dioxide Capture. In: Inamuddin, Asiri, A., Lichtfouse, E. (eds) Sustainable Agriculture Reviews 38. Sustainable Agriculture Reviews, vol 38. Springer, Cham. https://doi.org/10.1007/978-3-030-29337-6_7

Download citation

Publish with us

Policies and ethics