Skip to main content

Novel Biological Therapies with Direct Application to the Peritoneal Cavity

  • Chapter
  • First Online:
Cancer Regional Therapy

Abstract

Peritoneal carcinomatosis, a heterogeneous malignancy mostly not originating from the peritoneum itself, still has to be regarded as a tumor entity which is hard to combat despite a large variety of conventional treatment modalities being currently at hand. In this context, novel biological therapies which can be directly applied to the peritoneal cavity open up urgently needed new perspectives. Such biotherapies do not display any cross-resistances to standard therapies in contrast to locally or systemically applied chemotherapies, thereby making them ideal combination partners which potentially enhance antitumoral efficiency. New on the block are recent combinations of virotherapeutics with immune checkpoint inhibitors (ICIs). In this scheme, virotherapeutics work for an optimized induction of a systemic antitumoral immune response by concomitantly releasing viral antigens and tumor cell-associated antigens in a virus-induced, highly inflammatory tumor micromilieu, whereas ICIs optimize the execution of a systemic antitumoral immune response by releasing the “brakes” of the immune system, thus enabling T cells to kill cancer cells more efficiently. This and similar biotherapeutic approaches are of great promise regarding a further improvement of both curative and palliative approaches in the treatment of peritoneal carcinomatosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ceelen PW, Levine E. Intraperitoneal cancer therapy. Principles and practice. Florida: CRC Press; 2015.

    Book  Google Scholar 

  2. Lambert LA. Looking up: recent advances in understanding and treating peritoneal carcinomatosis. CA Cancer J Clin. 2015;65(4):284–98. https://doi.org/10.3322/caac.21277.

    Article  PubMed  Google Scholar 

  3. Sugarbaker PH, Jablonski KA. Prognostic features of 51 colorectal and 130 appendiceal cancer patients with peritoneal carcinomatosis treated by cytoreductive surgery and intraperitoneal chemotherapy. Ann Surg. 1995;221(2):124–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sugarbaker PH, Yu W, Yonemura Y. Gastrectomy, peritonectomy, and perioperative intraperitoneal chemotherapy: the evolution of treatment strategies for advanced gastric cancer. Semin Surg Oncol. 2003;21(4):233–48. https://doi.org/10.1002/ssu.10042.

    Article  PubMed  Google Scholar 

  5. Sugarbaker PH. Cytoreductive surgery and perioperative intraperitoneal chemotherapy for the treatment of advanced primary and recurrent ovarian cancer. Curr Opin Obstet Gynecol. 2009;21(1):15–24. https://doi.org/10.1097/GCO.0b013e32831f8f32.

    Article  PubMed  Google Scholar 

  6. Verwaal VJ, van Ruth S, de Bree E, van Sloothen GW, van Tinteren H, Boot H, et al. Randomized trial of cytoreduction and hyperthermic intraperitoneal chemotherapy versus systemic chemotherapy and palliative surgery in patients with peritoneal carcinomatosis of colorectal cancer. J Clin Oncol. 2003;21(20):3737–43. https://doi.org/10.1200/JCO.2003.04.187.

    Article  PubMed  Google Scholar 

  7. Glehen O, Mithieux F, Osinsky D, Beaujard AC, Freyer G, Guertsch P, et al. Surgery combined with peritonectomy procedures and intraperitoneal chemohyperthermia in abdominal cancers with peritoneal carcinomatosis: a phase II study. J Clin Oncol. 2003;21(5):799–806. https://doi.org/10.1200/JCO.2003.06.139.

    Article  CAS  PubMed  Google Scholar 

  8. Feldman AL, Libutti SK, Pingpank JF, Bartlett DL, Beresnev TH, Mavroukakis SM, et al. Analysis of factors associated with outcome in patients with malignant peritoneal mesothelioma undergoing surgical debulking and intraperitoneal chemotherapy. J Clin Oncol. 2003;21(24):4560–7. https://doi.org/10.1200/JCO.2003.04.150.

    Article  CAS  PubMed  Google Scholar 

  9. Konigsrainer I, Aschoff P, Zieker D, Beckert S, Glatzle J, Pfannenberg C, et al. Selection criteria for peritonectomy with hyperthermic intraoperative chemotherapy (HIPEC) in peritoneal carcinomatosis. Zentralbl Chir. 2008;133(5):468–72. https://doi.org/10.1055/s-2008–1,076,973.

    Article  CAS  PubMed  Google Scholar 

  10. Cazauran JB, Alyami M, Lasseur A, Gybels I, Glehen O, Bakrin N. Pressurized Intraperitoneal Aerosol Chemotherapy (PIPAC) procedure for non-resectable peritoneal carcinomatosis (with video). J Gastrointest Surg. 2018;22(2):374–5. https://doi.org/10.1007/s11605–017–3565–0.

    Article  PubMed  Google Scholar 

  11. Nowacki M, Alyami M, Villeneuve L, Mercier F, Hubner M, Willaert W, et al. Multicenter comprehensive methodological and technical analysis of 832 pressurized intraperitoneal aerosol chemotherapy (PIPAC) interventions performed in 349 patients for peritoneal carcinomatosis treatment: an international survey study. Eur J Surg Oncol. 2018;44(7):991–6. https://doi.org/10.1016/j.ejso.2018.02.014.

    Article  PubMed  Google Scholar 

  12. Tempfer C, Giger-Pabst U, Hilal Z, Dogan A, Rezniczek GA. Pressurized intraperitoneal aerosol chemotherapy (PIPAC) for peritoneal carcinomatosis: systematic review of clinical and experimental evidence with special emphasis on ovarian cancer. Arch Gynecol Obstet. 2018; https://doi.org/10.1007/s00404–018–4784–7.

  13. Solass W, Kerb R, Murdter T, Giger-Pabst U, Strumberg D, Tempfer C, et al. Intraperitoneal chemotherapy of peritoneal carcinomatosis using pressurized aerosol as an alternative to liquid solution: first evidence for efficacy. Ann Surg Oncol. 2014;21(2):553–9. https://doi.org/10.1245/s10434–013–3213–1.

    Article  PubMed  Google Scholar 

  14. Shen J, Zhu Z. Catumaxomab, a rat/murine hybrid trifunctional bispecific monoclonal antibody for the treatment of cancer. Curr Opin Mol Ther. 2008;10(3):273–84.

    CAS  PubMed  Google Scholar 

  15. Heiss MM, Murawa P, Koralewski P, Kutarska E, Kolesnik OO, Ivanchenko VV, et al. The trifunctional antibody catumaxomab for the treatment of malignant ascites due to epithelial cancer: results of a prospective randomized phase II/III trial. Int J Cancer. 2010;127(9):2209–21. https://doi.org/10.1002/ijc.25423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Strohlein MA, Lordick F, Ruttinger D, Grutzner KU, Schemanski OC, Jager M, et al. Immunotherapy of peritoneal carcinomatosis with the antibody catumaxomab in colon, gastric, or pancreatic cancer: an open-label, multicenter, phase I/II trial. Onkologie. 2011;34(3):101–8. https://doi.org/10.1159/000324667.

    Article  CAS  PubMed  Google Scholar 

  17. Dakwar GR, Braeckmans K, Demeester J, Ceelen W, De Smedt SC, Remaut K. Disregarded effect of biological fluids in siRNA delivery: human ascites fluid severely restricts cellular uptake of nanoparticles. ACS Appl Mater Interfaces. 2015;7(43):24322–9. https://doi.org/10.1021/acsami.5b08805.

    Article  CAS  PubMed  Google Scholar 

  18. Suri SS, Fenniri H, Singh B. Nanotechnology-based drug delivery systems. J Occup Med Toxicol. 2007;2:16. https://doi.org/10.1186/1745–6673–2-16.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wilczewska AZ, Niemirowicz K, Markiewicz KH, Car H. Nanoparticles as drug delivery systems. Pharmacol Rep. 2012;64(5):1020–37.

    Article  CAS  PubMed  Google Scholar 

  20. Miele E, Spinelli GP, Miele E, Tomao F, Tomao S. Albumin-bound formulation of paclitaxel (Abraxane ABI-007) in the treatment of breast cancer. Int J Nanomedicine. 2009;4:99–105.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Giordano G, Pancione M, Olivieri N, Parcesepe P, Velocci M, Di Raimo T, et al. Nano albumin bound-paclitaxel in pancreatic cancer: current evidences and future directions. World J Gastroenterol. 2017;23(32):5875–86. https://doi.org/10.3748/wjg.v23.i32.5875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wu D, Si M, Xue HY, Wong HL. Nanomedicine applications in the treatment of breast cancer: current state of the art. Int J Nanomedicine. 2017;12:5879–92. https://doi.org/10.2147/IJN.S123437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Williamson SK, Johnson GA, Maulhardt HA, Moore KM, McMeekin DS, Schulz TK, et al. A phase I study of intraperitoneal nanoparticulate paclitaxel (Nanotax(R)) in patients with peritoneal malignancies. Cancer Chemother Pharmacol. 2015;75(5):1075–87. https://doi.org/10.1007/s00280–015–2737–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nowacki M, Peterson M, Kloskowski T, McCabe E, Guiral DC, Polom K, et al. Nanoparticle as a novel tool in hyperthermic intraperitoneal and pressurized intraperitoneal aerosol chemotherapy to treat patients with peritoneal carcinomatosis. Oncotarget. 2017;8(44):78208–24. https://doi.org/10.18632/oncotarget.20596.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Fougeray S, Brignone C, Triebel F. A soluble LAG-3 protein as an immunopotentiator for therapeutic vaccines: preclinical evaluation of IMP321. Vaccine. 2006;24(26):5426–33. https://doi.org/10.1016/j.vaccine.2006.03.050.

    Article  CAS  PubMed  Google Scholar 

  26. Nadler LM, Stashenko P, Hardy R, Kaplan WD, Button LN, Kufe DW, et al. Serotherapy of a patient with a monoclonal antibody directed against a human lymphoma-associated antigen. Cancer Res. 1980;40(9):3147–54.

    CAS  PubMed  Google Scholar 

  27. Tsimberidou AM, Fu S, Subbiah IM, Naing A, Hong DS, Wen S, et al. Intraperitoneal and intravenous chemotherapy in peritoneal carcinomatosis. Hepatogastroenterology. 2012;59(116):960–4. https://doi.org/10.5754/hge12189.

    Article  CAS  PubMed  Google Scholar 

  28. Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature. 2011;480(7378):480–9. https://doi.org/10.1038/nature10673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shih K, Arkenau HT, Infante JR. Clinical impact of checkpoint inhibitors as novel cancer therapies. Drugs. 2014;74(17):1993–2013. https://doi.org/10.1007/s40265–014–0305–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev. Cancer. 2012;12(4):252–64. https://doi.org/10.1038/nrc3239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Buque A, Bloy N, Aranda F, Castoldi F, Eggermont A, Cremer I, et al. Trial Watch: Immunomodulatory monoclonal antibodies for oncological indications. Oncoimmunology. 2015;4(4):e1008814. https://doi.org/10.1080/2162402X.2015.1008814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kelly E, Russell SJ. History of oncolytic viruses: genesis to genetic engineering. Mol Ther. 2007;15(4):651–9. https://doi.org/10.1038/sj.mt.6300108.

    Article  CAS  PubMed  Google Scholar 

  33. Choi AH, O’Leary MP, Fong Y, Chen NG. From benchtop to bedside: a review of oncolytic virotherapy. Biomedicines. 2016;4(3) https://doi.org/10.3390/biomedicines4030018.

    Article  PubMed Central  Google Scholar 

  34. Nguyen TL, Abdelbary H, Arguello M, Breitbach C, Leveille S, Diallo JS, et al. Chemical targeting of the innate antiviral response by histone deacetylase inhibitors renders refractory cancers sensitive to viral oncolysis. Proc Natl Acad Sci U S A. 2008;105(39):14981–6. https://doi.org/10.1073/pnas.0803988105.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Liu TC, Galanis E, Kirn D. Clinical trial results with oncolytic virotherapy: a century of promise, a decade of progress. Nat Clin Pract Oncol. 2007;4(2):101–17. https://doi.org/10.1038/ncponc0736.

    Article  CAS  PubMed  Google Scholar 

  36. Bommareddy PK, Silk AW, Kaufman HL. Intratumoral approaches for the treatment of melanoma. Cancer J. 2017;23(1):40–7. https://doi.org/10.1097/PPO.0000000000000234.

    Article  PubMed  Google Scholar 

  37. Boozari B, Mundt B, Woller N, Struver N, Gurlevik E, Schache P, et al. Antitumoural immunity by virus-mediated immunogenic apoptosis inhibits metastatic growth of hepatocellular carcinoma. Gut. 2010;59(10):1416–26. https://doi.org/10.1136/gut.2009.196519.

    Article  CAS  PubMed  Google Scholar 

  38. Prestwich RJ, Harrington KJ, Pandha HS, Vile RG, Melcher AA, Errington F. Oncolytic viruses: a novel form of immunotherapy. Expert Rev Anticancer Ther. 2008;8(10):1581–8. https://doi.org/10.1586/14737140.8.10.1581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jhawar SR, Thandoni A, Bommareddy PK, Hassan S, Kohlhapp FJ, Goyal S, et al. Oncolytic viruses-natural and genetically engineered cancer immunotherapies. Front Oncol. 2017;7:202. https://doi.org/10.3389/fonc.2017.00202.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lundstrom K. New frontiers in oncolytic viruses: optimizing and selecting for virus strains with improved efficacy. Biologics. 2018;12:43–60. https://doi.org/10.2147/BTT.S140114.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Galanis E, Hartmann LC, Cliby WA, Long HJ, Peethambaram PP, Barrette BA, et al. Phase I trial of intraperitoneal administration of an oncolytic measles virus strain engineered to express carcinoembryonic antigen for recurrent ovarian cancer. Cancer Res. 2010;70(3):875–82. https://doi.org/10.1158/0008–5472.CAN-09–2762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Galanis E, Atherton PJ, Maurer MJ, Knutson KL, Dowdy SC, Cliby WA, et al. Oncolytic measles virus expressing the sodium iodide symporter to treat drug-resistant ovarian cancer. Cancer Res. 2015;75(1):22–30. https://doi.org/10.1158/0008–5472.CAN-14–2533.

    Article  CAS  PubMed  Google Scholar 

  43. Phelps M, Cohn DE, O’Malley D. Reovirus replication in ovarian and peritoneal tumors after intravenous administration. 2010. https://oncolytics.s3.amazonaws.com/data/46/original.

  44. Zhang Q, Yu YA, Wang E, Chen N, Danner RL, Munson PJ, et al. Eradication of solid human breast tumors in nude mice with an intravenously injected light-emitting oncolytic vaccinia virus. Cancer Res. 2007;67(20):10038–46. https://doi.org/10.1158/0008–5472.CAN-07–0146.

    Article  CAS  PubMed  Google Scholar 

  45. Lauer UM, Schell M, Beil J, Berchtold S, Koppenhofer U, Glatzle J, et al. Phase I study of oncolytic vaccinia virus GL-ONC1 in patients with peritoneal carcinomatosis. Clin Cancer Res. 2018; https://doi.org/10.1158/1078–0432.CCR-18–0244.

  46. Kaufman HL, Kohlhapp FJ, Zloza A. Oncolytic viruses: a new class of immunotherapy drugs. Nat Rev Drug Discov. 2015;14(9):642–62. https://doi.org/10.1038/nrd4663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Magge D, Guo ZS, O’Malley ME, Francis L, Ravindranathan R, Bartlett DL. Inhibitors of C5 complement enhance vaccinia virus oncolysis. Cancer Gene Ther. 2013;20(6):342–50. https://doi.org/10.1038/cgt.2013.26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ottolino-Perry K, Diallo JS, Lichty BD, Bell JC, McCart JA. Intelligent design: combination therapy with oncolytic viruses. Mol Ther. 2010;18(2):251–63. https://doi.org/10.1038/mt.2009.283.

    Article  CAS  PubMed  Google Scholar 

  49. Woller N, Gurlevik E, Fleischmann-Mundt B, Schumacher A, Knocke S, Kloos AM, et al. Viral infection of tumors overcomes resistance to PD-1-immunotherapy by broadening neoantigenome-directed T-cell responses. Mol Ther. 2015;23(10):1630–40. https://doi.org/10.1038/mt.2015.115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ribas A, Dummer R, Puzanov I, VanderWalde A, Andtbacka RHI, Michielin O, et al. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy. Cell. 2017;170(6):1109–19 e10. https://doi.org/10.1016/j.cell.2017.08.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich M. Lauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lauer, U.M., Yurttas, C., Beil, J. (2020). Novel Biological Therapies with Direct Application to the Peritoneal Cavity. In: Fong, Y., Gamblin, T., Han, E., Lee, B., Zager, J. (eds) Cancer Regional Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-28891-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28891-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28890-7

  • Online ISBN: 978-3-030-28891-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics