Skip to main content

Blood Pressure Management in the Very Preterm Infant: More than Just Millimetres

  • Chapter
  • First Online:
Emerging Topics and Controversies in Neonatology

Abstract

Despite significant advances in many areas of care, the management of low blood pressure and circulatory compromise in the preterm infant continues to be based on quite limited evidence. Deciding when to intervene, and with what to intervene, remains a conundrum at the bedside. In this chapter we explore the aetiology of low blood pressure, we review assessment strategies including new monitoring modalities that may provide a better understanding of the underlying problem and hence direct more appropriate treatments. The evidence for current therapies is reviewed, including the newer inodilators. The future will see a paradigm shift in our current approach to haemodynamic instability and management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dempsey EM, Barrington KJ. Treating hypotension in the preterm infant: when and with what: a critical and systematic review. J Perinatol. 2007;27(8):469–78.

    Article  CAS  PubMed  Google Scholar 

  2. Laughon M, Bose C, Allred E, O’Shea TM, Van Marter LJ, Bednarek F, et al. Factors associated with treatment for hypotension in extremely low gestational age newborns during the first postnatal week. Pediatrics. 2007;119(2):273–80.

    Article  PubMed  Google Scholar 

  3. Batton B, Li L, Newman NS, Das A, Watterberg KL, Yoder BA, et al. Use of antihypotensive therapies in extremely preterm infants. Pediatrics. 2013;131(6):e1865–73.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Stranak Z, Semberova J, Barrington K, O’Donnell C, Marlow N, Naulaers G, et al. International survey on diagnosis and management of hypotension in extremely preterm babies. Eur J Pediatr. 2014;173(6):793–8.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Development of audit measures and guidelines for good practice in the management of neonatal respiratory distress syndrome. Report of a Joint Working Group of the British Association of Perinatal Medicine and the Research Unit of the Royal College of Physicians. Arch Dis Child. 1992;67(10 Spec No):1221–7.

    Google Scholar 

  6. Barrington KJ, Stewart S, Lee S. Differing blood pressure thresholds in preterm infants, effects on frequency of diagnosis of hypotension and intraventricular haemorrhage. Pediatr Res. 2002;51:455A.

    Google Scholar 

  7. Noori S, Stavroudis TA, Seri I. Systemic and cerebral hemodynamics during the transitional period after premature birth. Clin Perinatol. 2009;36(4):723–36, v.

    Article  PubMed  Google Scholar 

  8. Anderson PA. Maturation and cardiac contractility. Cardiol Clin. 1989;7:209–25.

    Article  CAS  PubMed  Google Scholar 

  9. Pladys P, Wodey E, Beuchee A, Branger B, Betremieux P. Left ventricle output and mean arterial blood pressure in preterm infants during the 1st day of life. Eur J Pediatr. 1999;158(10):817–24.

    Article  CAS  PubMed  Google Scholar 

  10. Kluckow M, Evans N. Ductal shunting, high pulmonary blood flow, and pulmonary hemorrhage. J Pediatr. 2000;137(1):68–72.

    Article  CAS  PubMed  Google Scholar 

  11. Mitchell T, MacDonald JW, Srinouanpranchanh S, Bammler TK, Merillat S, Boldenow E, et al. Evidence of cardiac involvement in the fetal inflammatory response syndrome: disruption of gene networks programming cardiac development in nonhuman primates. Am J Obstet Gynecol. 2018;218(4):438.e1–438.e16.

    Article  Google Scholar 

  12. Galinsky R, Hooper SB, Wallace MJ, Westover AJ, Black MJ, Moss TJ, et al. Intrauterine inflammation alters cardiopulmonary and cerebral haemodynamics at birth in preterm lambs. J Physiol. 2013;591(8):2127–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. de Waal KA, Evans N, Osborn DA, Kluckow M. Cardiorespiratory effects of changes in end expiratory pressure in ventilated newborns. Arch Dis Child Fetal Neonatal Ed. 2007;92(6):F444–8.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lakkundi A, Wright I, de Waal K. Transitional hemodynamics in preterm infants with a respiratory management strategy directed at avoidance of mechanical ventilation. Early Hum Dev. 2014;90(8):409–12.

    Article  PubMed  Google Scholar 

  15. Seri I. Circulatory support of the sick preterm infant. Semin Neonatol. 2001;6(1):85–95.

    Article  CAS  PubMed  Google Scholar 

  16. Shimokaze T, Akaba K, Saito E. Oscillometric and intra-arterial blood pressure in preterm and term infants: extent of discrepancy and factors associated with inaccuracy. Am J Perinatol. 2015;32(3):277–82.

    PubMed  Google Scholar 

  17. O’Shea J, Dempsey EM. A comparison of blood pressure measurements in newborns. Am J Perinatol. 2009;26(2):113–6.

    Article  PubMed  Google Scholar 

  18. Versmold HT, Kitterman JA, Phibbs RH, Gregory GA, Tooley WH. Aortic blood pressure during the first 12 hours of life in infants with birth weight 610 to 4,220 grams. Pediatrics. 1981;67(5):607–13.

    CAS  PubMed  Google Scholar 

  19. Cunningham S, Symon AG, Elton RA, Zhu C, McIntosh N. Intra-arterial blood pressure reference ranges, death and morbidity in very low birthweight infants during the first seven days of life. Early Hum Dev. 1999;56(2–3):151–65.

    Article  CAS  PubMed  Google Scholar 

  20. Lee J, Rajadurai VS, Tan KW. Blood pressure standards for very low birthweight infants during the first day of life. Arch Dis Child Fetal Neonatal Ed. 1999;81(3):F168–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Batton B, Li L, Newman NS, Das A, Watterberg KL, Yoder BA, et al. Evolving blood pressure dynamics for extremely preterm infants. J Perinatol. 2014;34(4):301–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. El-Khuffash A, McNamara PJ. Hemodynamic assessment and monitoring of premature infants. Clin Perinatol. 2017;44(2):377–93.

    Article  PubMed  Google Scholar 

  23. Miletin J, Pichova K, Dempsey EM. Bedside detection of low systemic flow in the very low birth weight infant on day 1 of life. Eur J Pediatr. 2009;168(7):809–13.

    Article  CAS  PubMed  Google Scholar 

  24. Kluckow M, Evans N. Relationship between blood pressure and cardiac output in preterm infants requiring mechanical ventilation. J Pediatr. 1996;129(4):506–12.

    Article  CAS  PubMed  Google Scholar 

  25. de Boode WP. Clinical monitoring of systemic hemodynamics in critically ill newborns. Early Hum Dev. 2010;86(3):137–41.

    Article  PubMed  Google Scholar 

  26. Osborn DA, Evans N, Kluckow M. Clinical detection of low upper body blood flow in very premature infants using blood pressure, capillary refill time, and central-peripheral temperature difference. Arch Dis Child Fetal Neonatal Ed. 2004;89(2):F168–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tibby SM, Hatherill M, Marsh MJ, Morrison G, Anderson D, Murdoch IA. Clinical validation of cardiac output measurements using femoral artery thermodilution with direct Fick in ventilated children and infants. Intensive Care Med. 1997;23(9):987–91.

    Article  CAS  PubMed  Google Scholar 

  28. de Boode WP, Singh Y, Gupta S, Austin T, Bohlin K, Dempsey E, et al. Recommendations for neonatologist performed echocardiography in Europe: consensus statement endorsed by European Society for Paediatric Research (ESPR) and European Society for Neonatology (ESN). Pediatr Res. 2016;80(4):465–71.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Singh Y, Gupta S, Groves AM, Gandhi A, Thomson J, Qureshi S, et al. Expert consensus statement ‘Neonatologist-performed Echocardiography (NoPE)’-training and accreditation in UK. Eur J Pediatr. 2016;175(2):281–7.

    Article  PubMed  Google Scholar 

  30. Mertens L, Seri I, Marek J, Arlettaz R, Barker P, McNamara P, et al. Targeted neonatal echocardiography in the neonatal intensive care unit: practice guidelines and recommendations for training. Writing Group of the American Society of Echocardiography (ASE) in collaboration with the European Association of Echocardiography (EAE) and the Association for European Pediatric Cardiologists (AEPC). J Am Soc Echocardiogr. 2011;24(10):1057–78.

    Article  PubMed  Google Scholar 

  31. Kluckow M, Seri I, Evans N. Functional echocardiography: an emerging clinical tool for the neonatologist. J Pediatr. 2007;150(2):125–30.

    Article  PubMed  Google Scholar 

  32. Noori S, Seri I. Does targeted neonatal echocardiography affect hemodynamics and cerebral oxygenation in extremely preterm infants? J Perinatol. 2014;34(11):847–9.

    Article  CAS  PubMed  Google Scholar 

  33. El-Khuffash AF, Jain A, Weisz D, Mertens L, McNamara PJ. Assessment and treatment of post patent ductus arteriosus ligation syndrome. J Pediatr. 2014;165(1):46–52.e1.

    Article  CAS  PubMed  Google Scholar 

  34. Sehgal A, Paul E, Menahem S. Functional echocardiography in staging for ductal disease severity: role in predicting outcomes. Eur J Pediatr. 2013;172(2):179–84.

    Article  PubMed  Google Scholar 

  35. Elsayed YN, Amer R, Seshia MM. The impact of integrated evaluation of hemodynamics using targeted neonatal echocardiography with indices of tissue oxygenation: a new approach. J Perinatol. 2017;37(5):527–35.

    Article  CAS  PubMed  Google Scholar 

  36. Harabor A, Soraisham AS. Utility of targeted neonatal echocardiography in the management of neonatal illness. J Ultrasound Med. 2015;34(7):1259–63.

    Article  PubMed  Google Scholar 

  37. Subhedar NV. Treatment of hypotension in newborns. Semin Neonatol. 2003;8(6):413–23.

    Article  PubMed  Google Scholar 

  38. van Bel F, Lemmers P, Naulaers G. Monitoring neonatal regional cerebral oxygen saturation in clinical practice: value and pitfalls. Neonatology. 2008;94(4):237–44.

    Article  PubMed  CAS  Google Scholar 

  39. Dix LM, van Bel F, Lemmers PM. Monitoring cerebral oxygenation in neonates: an update. Front Pediatr. 2017;5:46.

    PubMed  PubMed Central  Google Scholar 

  40. Kooi EM, van der Laan ME, Verhagen EA, Van Braeckel KN, Bos AF. Volume expansion does not alter cerebral tissue oxygen extraction in preterm infants with clinical signs of poor perfusion. Neonatology. 2013;103(4):308–14.

    Article  CAS  PubMed  Google Scholar 

  41. Underwood MA, Milstein JM, Sherman MP. Near-infrared spectroscopy as a screening tool for patent ductus arteriosus in extremely low birth weight infants. Neonatology. 2007;91(2):134–9.

    Article  PubMed  Google Scholar 

  42. Chock VY, Ramamoorthy C, Van Meurs KP. Cerebral oxygenation during different treatment strategies for a patent ductus arteriosus. Neonatology. 2011;100(3):233–40.

    Article  CAS  PubMed  Google Scholar 

  43. Moran M, Miletin J, Pichova K, Dempsey EM. Cerebral tissue oxygenation index and superior vena cava blood flow in the very low birth weight infant. Acta Paediatr. 2009;98(1):43–6.

    Article  CAS  PubMed  Google Scholar 

  44. Takami T, Suganami Y, Sunohara D, Kondo A, Mizukaki N, Fujioka T, et al. Umbilical cord milking stabilizes cerebral oxygenation and perfusion in infants born before 29 weeks of gestation. J Pediatr. 2012;161(4):742–7.

    Article  PubMed  Google Scholar 

  45. Garner RS, Burchfield DJ. Treatment of presumed hypotension in very low birthweight neonates: effects on regional cerebral oxygenation. Arch Dis Child Fetal Neonatal Ed. 2013;98(2):F117–21.

    Article  PubMed  Google Scholar 

  46. Hyttel-Sorensen S, Austin T, van Bel F, Benders M, Claris O, Dempsey E, et al. A phase II randomized clinical trial on cerebral near-infrared spectroscopy plus a treatment guideline versus treatment as usual for extremely preterm infants during the first three days of life (SafeBoosC): study protocol for a randomized controlled trial. Trials. 2013;14:120.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hyttel-Sorensen S, Pellicer A, Alderliesten T, Austin T, van Bel F, Benders M, et al. Cerebral near infrared spectroscopy oximetry in extremely preterm infants: phase II randomised clinical trial. BMJ. 2015;350:g7635.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Verhagen EA, Hummel LA, Bos AF, Kooi EM. Near-infrared spectroscopy to detect absence of cerebrovascular autoregulation in preterm infants. Clin Neurophysiol. 2014;125(1):47–52.

    Article  PubMed  Google Scholar 

  49. Kooi EMW, Verhagen EA, Elting JWJ, Czosnyka M, Austin T, Wong FY, et al. Measuring cerebrovascular autoregulation in preterm infants using near-infrared spectroscopy: an overview of the literature. Expert Rev Neurother. 2017;17(8):801–18.

    Article  CAS  PubMed  Google Scholar 

  50. He SR, Zhang C, Liu YM, Sun YX, Zhuang J, Chen JM, et al. Accuracy of the ultrasonic cardiac output monitor in healthy term neonates during postnatal circulatory adaptation. Chin Med J. 2011;124(15):2284–9.

    CAS  PubMed  Google Scholar 

  51. Ballestero Y, Lopez-Herce J, Urbano J, Solana MJ, Botran M, Bellon JM, et al. Measurement of cardiac output in children by bioreactance. Pediatr Cardiol. 2011;32(4):469–72.

    Article  PubMed  Google Scholar 

  52. Norozi K, Beck C, Osthaus WA, Wille I, Wessel A, Bertram H. Electrical velocimetry for measuring cardiac output in children with congenital heart disease. Br J Anaesth. 2008;100(1):88–94.

    Article  CAS  PubMed  Google Scholar 

  53. Song R, Rich W, Kim JH, Finer NN, Katheria AC. The use of electrical cardiometry for continuous cardiac output monitoring in preterm neonates: a validation study. Am J Perinatol. 2014;31(12):1105–10.

    Article  CAS  PubMed  Google Scholar 

  54. Weisz DE, Jain A, McNamara PJ, El-Khuffash A. Non-invasive cardiac output monitoring in neonates using bioreactance: a comparison with echocardiography. Neonatology. 2012;102(1):61–7.

    Article  PubMed  Google Scholar 

  55. Rodriguez Sanchez de la Blanca A, Sanchez Luna M, Gonzalez Pacheco N, Arriaga Redondo M, Navarro Patino N. Electrical velocimetry for non-invasive monitoring of the closure of the ductus arteriosus in preterm infants. Eur J Pediatr. 2018;177(2):229–35.

    Article  PubMed  Google Scholar 

  56. Torigoe T, Sato S, Nagayama Y, Sato T, Yamazaki H. Influence of patent ductus arteriosus and ventilators on electrical velocimetry for measuring cardiac output in very-low/low birth weight infants. J Perinatol. 2015;35(7):485–9.

    Article  CAS  PubMed  Google Scholar 

  57. Freidl T, Baik N, Pichler G, Schwaberger B, Zingerle B, Avian A, et al. Haemodynamic transition after birth: a new tool for non-invasive cardiac output monitoring. Neonatology. 2017;111(1):55–60.

    Article  PubMed  Google Scholar 

  58. Wu TW, Tamrazi B, Soleymani S, Seri I, Noori S. Hemodynamic changes during rewarming phase of whole-body hypothermia therapy in neonates with hypoxic-ischemic encephalopathy. J Pediatr. 2018;197:68–74.e2.

    Article  PubMed  Google Scholar 

  59. Alderliesten T, Lemmers PM, Baerts W, Groenendaal F, van Bel F. Perfusion index in preterm infants during the first 3 days of life: reference values and relation with clinical variables. Neonatology. 2015;107(4):258–65.

    Article  PubMed  Google Scholar 

  60. Kinoshita M, Hawkes CP, Ryan CA, Dempsey EM. Perfusion index in the very preterm infant. Acta Paediatr. 2013;102(9):e398–401.

    Article  PubMed  Google Scholar 

  61. De Felice C, Goldstein MR, Parrini S, Verrotti A, Criscuolo M, Latini G. Early dynamic changes in pulse oximetry signals in preterm newborns with histologic chorioamnionitis. Pediatr Crit Care Med. 2006;7(2):138–42.

    Article  PubMed  Google Scholar 

  62. Kroese JK, van Vonderen JJ, Narayen IC, Walther FJ, Hooper S, Te Pas AB. The perfusion index of healthy term infants during transition at birth. Eur J Pediatr. 2016;175(4):475–9.

    Article  PubMed  Google Scholar 

  63. Zaramella P, Freato F, Quaresima V, Secchieri S, Milan A, Grisafi D, et al. Early versus late cord clamping: effects on peripheral blood flow and cardiac function in term infants. Early Hum Dev. 2008;84(3):195–200.

    Article  PubMed  Google Scholar 

  64. Janaillac M, Beausoleil TP, Barrington KJ, Raboisson MJ, Karam O, Dehaes M, et al. Correlations between near-infrared spectroscopy, perfusion index, and cardiac outputs in extremely preterm infants in the first 72 h of life. Eur J Pediatr. 2018;177(4):541–50.

    Article  CAS  PubMed  Google Scholar 

  65. Gomez-Pomar E, Makhoul M, Westgate PM, Ibonia KT, Patwardhan A, Giannone PJ, et al. Relationship between perfusion index and patent ductus arteriosus in preterm infants. Pediatr Res. 2017;81(5):775–9.

    Article  PubMed  Google Scholar 

  66. Van Laere D, O’Toole JM, Voeten M, McKiernan J, Boylan GB, Dempsey E. Decreased variability and low values of perfusion index on day one are associated with adverse outcome in extremely preterm infants. J Pediatr. 2016;178:119–24.e1.

    Article  PubMed  Google Scholar 

  67. Sehgal A, Osborn D, McNamara PJ. Cardiovascular support in preterm infants: a survey of practices in Australia and New Zealand. J Paediatr Child Health. 2012;48(4):317–23.

    Article  PubMed  Google Scholar 

  68. Evans N. Volume expansion during neonatal intensive care: do we know what we are doing? Semin Neonatol. 2003;8(4):315–23.

    Article  PubMed  Google Scholar 

  69. Osborn DA, Evans N. Early volume expansion for prevention of morbidity and mortality in very preterm infants. Cochrane Database Syst Rev. 2004(2):CD002055.

    Google Scholar 

  70. Dempsey EM, Barrington KJ, Marlow N, O’Donnell CP, Miletin J, Naulaers G, et al. Management of hypotension in preterm infants (the HIP trial): a randomised controlled trial of hypotension management in extremely low gestational age newborns. Neonatology. 2014;105(4):275–81.

    Article  CAS  PubMed  Google Scholar 

  71. Garvey AA, Kooi EMW, Dempsey EM. Inotropes for preterm infants: 50 years on are we any wiser? Front Pediatr. 2018;6:88.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Ogasawara K, Sato M, Hashimoto K, Imamura T, Go H, Hosoya M. A polymorphism in the glucocorticoid receptor gene is associated with refractory hypotension in premature infants. Pediatr Neonatol. 2018;59(3):251–7.

    Article  PubMed  Google Scholar 

  73. Giaccone A, Zuppa AF, Sood B, Cohen MS, O’Byrne ML, Moorthy G, et al. Milrinone pharmacokinetics and pharmacodynamics in neonates with persistent pulmonary hypertension of the newborn. Am J Perinatol. 2017;34(8):749–58.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Joynt C, Cheung PY. Treating hypotension in preterm neonates with vasoactive medications. Front Pediatr. 2018;6:86.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Ergenekon E, Rojas-Anaya H, Bravo MC, Kotidis C, Mahoney L, Rabe H. Cardiovascular drug therapy for human newborn: review of pharmacodynamic data. Curr Pharm Des. 2017;23(38):5850–60.

    Article  CAS  PubMed  Google Scholar 

  76. Lundstrom K, Pryds O, Greisen G. The haemodynamic effects of dopamine and volume expansion in sick preterm infants. Early Hum Dev. 2000;57(2):157–63.

    Article  CAS  PubMed  Google Scholar 

  77. Cuevas L, Yeh TF, John EG, Cuevas D, Plides RS. The effect of low-dose dopamine infusion on cardiopulmonary and renal status in premature newborns with respiratory distress syndrome. Am J Dis Child. 1991;145(7):799–803.

    CAS  PubMed  Google Scholar 

  78. Padbury JF. Neonatal dopamine pharmacodynamics: lessons from the bedside. J Pediatr. 1998;133(6):719–20.

    Article  CAS  PubMed  Google Scholar 

  79. Zhang J, Penny DJ, Kim NS, Yu VY, Smolich JJ. Mechanisms of blood pressure increase induced by dopamine in hypotensive preterm neonates. Arch Dis Child Fetal Neonatal Ed. 1999;81(2):F99–F104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Evans N, Osborn D, Kluckow M. Mechanism of blood pressure increase induced by dopamine in hypotensive preterm neonates. Arch Dis Child Fetal Neonatal Ed. 2000;83(1):F75–6.

    Article  CAS  PubMed  Google Scholar 

  81. Phillipos EZ, Barrington KJ, Robertson MA. Dopamine versus epinephrine for inotropic support in the neonate: a randomised blinded trial. Peditr Res. 1996;39:A238.

    Google Scholar 

  82. Sassano-Higgins S, Friedlich P, Seri I. A meta-analysis of dopamine use in hypotensive preterm infants: blood pressure and cerebral hemodynamics. J Perinatol. 2011;31(10):647–55.

    Article  CAS  PubMed  Google Scholar 

  83. Osborn D, Evans N, Kluckow M. Randomized trial of dobutamine versus dopamine in preterm infants with low systemic blood flow. J Pediatr. 2002;140(2):183–91.

    Article  CAS  PubMed  Google Scholar 

  84. Liet JM, Boscher C, Gras-Leguen C, Gournay V, Debillon T, Roze JC. Dopamine effects on pulmonary artery pressure in hypotensive preterm infants with patent ductus arteriosus. J Pediatr. 2002;140(3):373–5.

    Article  CAS  PubMed  Google Scholar 

  85. Eriksen VR, Hahn GH, Greisen G. Dopamine therapy is associated with impaired cerebral autoregulation in preterm infants. Acta Paediatr. 2014;103(12):1221–6.

    Article  CAS  PubMed  Google Scholar 

  86. Wong FY, Barfield CP, Horne RS, Walker AM. Dopamine therapy promotes cerebral flow-metabolism coupling in preterm infants. Intensive Care Med. 2009;35(10):1777–82.

    Article  CAS  PubMed  Google Scholar 

  87. Osborn DA, Evans N, Kluckow M, Bowen JR, Rieger I. Low superior vena cava flow and effect of inotropes on neurodevelopment to 3 years in preterm infants. Pediatrics. 2007;120(2):372–80.

    Article  PubMed  Google Scholar 

  88. Pellicer A, Valverde E, Elorza MD, Madero R, Gaya F, Quero J, et al. Cardiovascular support for low birth weight infants and cerebral hemodynamics: a randomized, blinded, clinical trial. Pediatrics. 2005;115(6):1501–12.

    Article  PubMed  Google Scholar 

  89. Ventura AM, Shieh HH, Bousso A, Goes PF, de Cassia FOFI, de Souza DC, et al. Double-blind prospective randomized controlled trial of dopamine versus epinephrine as first-line vasoactive drugs in pediatric septic shock. Crit Care Med. 2015;43(11):2292–302.

    Article  CAS  PubMed  Google Scholar 

  90. Rizk MY, Lapointe A, Lefebvre F, Barrington KJ. Norepinephrine infusion improves haemodynamics in the preterm infants during septic shock. Acta Paediatr. 2018;107(3):408–13.

    Article  CAS  PubMed  Google Scholar 

  91. Tourneux P, Rakza T, Abazine A, Krim G, Storme L. Noradrenaline for management of septic shock refractory to fluid loading and dopamine or dobutamine in full-term newborn infants. Acta Paediatr. 2008;97(2):177–80.

    Article  CAS  PubMed  Google Scholar 

  92. Rowcliff K, de Waal K, Mohamed AL, Chaudhari T. Noradrenaline in preterm infants with cardiovascular compromise. Eur J Pediatr. 2016;175(12):1967–73.

    Article  CAS  PubMed  Google Scholar 

  93. Paradisis M, Evans N, Kluckow M, Osborn D, McLachlan AJ. Pilot study of milrinone for low systemic blood flow in very preterm infants. J Pediatr. 2006;148(3):306–13.

    Article  CAS  PubMed  Google Scholar 

  94. Paradisis M, Evans N, Kluckow M, Osborn D. Randomized trial of milrinone versus placebo for prevention of low systemic blood flow in very preterm infants. J Pediatr. 2009;154(2):189–95.

    Article  CAS  PubMed  Google Scholar 

  95. Sehgal A. Haemodynamically unstable preterm infant: an unresolved management conundrum. Eur J Pediatr. 2011;170(10):1237–45.

    Article  PubMed  Google Scholar 

  96. Rios DR, Kaiser JR. Vasopressin versus dopamine for treatment of hypotension in extremely low birth weight infants: a randomized, blinded pilot study. J Pediatr. 2015;166(4):850–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ibrahim H, Sinha IP, Subhedar NV. Corticosteroids for treating hypotension in preterm infants. Cochrane Database Syst Rev. 2011(12):CD003662.

    Google Scholar 

  98. Higgins S, Friedlich P, Seri I. Hydrocortisone for hypotension and vasopressor dependence in preterm neonates: a meta-analysis. J Perinatol. 2010;30(6):373–8.

    Article  CAS  PubMed  Google Scholar 

  99. Peeples ES. An evaluation of hydrocortisone dosing for neonatal refractory hypotension. J Perinatol. 2017;37(8):943–6.

    Article  CAS  PubMed  Google Scholar 

  100. van der Eijk AC, van Rens RM, Dankelman J, Smit BJ. A literature review on flow-rate variability in neonatal IV therapy. Paediatr Anaesth. 2013;23(1):9–21.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Funding source: This article was supported by a Science Foundation Ireland Research Centre Award (INFANT-12/RC/2272).

Conflict of interest: The authors have no actual or potential conflicts of interest relevant to this article to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene M. Dempsey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dempsey, E.M., Kooi, E.M.W. (2020). Blood Pressure Management in the Very Preterm Infant: More than Just Millimetres. In: Boyle, E., Cusack, J. (eds) Emerging Topics and Controversies in Neonatology. Springer, Cham. https://doi.org/10.1007/978-3-030-28829-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28829-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28828-0

  • Online ISBN: 978-3-030-28829-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics