Skip to main content

Acid-Base and Electrolyte Disorders in Emergency Critical Care

  • Chapter
  • First Online:
Emergency Department Critical Care

Abstract

This chapter describes acid-base and electrolyte homeostasis and pathophysiology and presents an organized approach to critical acid-base and electrolyte disorders. Acid-base homeostasis is achieved by tight control of alveolar ventilation and multiple renal mechanisms. Symptoms of severe acidemia are nonspecific, including altered level of consciousness and cardiovascular instability, although modest acidemia is typically well tolerated. Severe alkalemia is less well tolerated and may result in electrolyte derangements, arrhythmias, seizures, and cerebral and myocardial ischemia. By systematically analyzing the blood gas, serum chemistries, anion gap, and osmolar gap, a comprehensive differential diagnosis of acid-base disorders can be formed. Patients with brain injury, heart failure, certain toxic ingestions, and pregnancy require near-normal pH, whereas other patients with respiratory failure will tolerate permissive hypercapnia. Sodium bicarbonate has many adverse effects and, outside of certain indications, is best used to treat acidemia with cardiovascular collapse as opposed to simply normalizing the serum pH. Severe sodium abnormalities primarily affect the central nervous system, and in patients with neurologic emergencies and a serum sodium less than 120 mEq, rapid correction with hypertonic saline is necessary; in the absence of severe symptoms, slow correction of sodium disorders is critically important. Severe potassium abnormalities primarily affect cardiac conduction and can result in serious arrhythmias. The treatment of severe hyperkalemia focuses on stabilizing the cardiac membrane, shifting potassium intracellularly, and then removing potassium from the body. Hypokalemia and hypomagnesemia may cause cardiac irritability, typically occur together, and are treated concomitantly. Severe hypokalemia and hypophosphatemia can result in significant muscle weakness and ventilatory failure. Hypocalcemia in the context of massive transfusion may be an unrecognized cause of persistent hypotension in a bleeding patient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kellum JA. Chapter 12: Acid-base disorders. In: Vincent JL, Abraham E, et al., editors. Textbook of critical care medicine. 6th ed. Philadelphia: Elsevier Saunders; 2011. p. 43–52.

    Chapter  Google Scholar 

  2. Kellum JA. Determinants of blood pH in health and disease. [Review]. Crit Care. 2000;4:6–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Koeppen BM. The kidney and acid-base regulation. Adv Physiol Educ. 2009;33(4):275–81.

    Article  PubMed  Google Scholar 

  4. Schlichtig R, Grogono A, et al. Human PaCO2 and standard base excess compensation for acid-base imbalance. Crit Care Med. 1998;26(7):1173–9.

    Article  CAS  PubMed  Google Scholar 

  5. Androgue HJ, Madias NE. Management of life-threatening acid-base disorders: first of two parts. N Engl J Med. 1998;338(1):26–34.

    Article  Google Scholar 

  6. Lardner A. The effects of extracellular pH on immune function. J Leukoc Biology. 2001;69(2):522–30.

    CAS  Google Scholar 

  7. Orchard CH, Kentish JC. Effects of the changes of pH on the contractile function of cardiac muscle. Am J Physiol. 1990;258(6 Pt 1):967–81.

    Article  Google Scholar 

  8. Schotola H, Toischer K, Popov AF, Renner A, Schmitto JD, Gummert J, et al. Mild metabolic acidosis impairs the beta-adrenergic response in isolated human failing myocardium. Crit Care. 2012;16(4):R153.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bountra C, Vaughan-Jones RD. Effect of intracellular and extracellular pH on contraction in isolated, mammalian cardiac muscle. J Physiol. 1989;418:163–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rocamora JM, Downing SE. Preservation of ventricular function by adrenergic influences during metabolic acidosis in the cat. Circ Res. 1969;24:373–81.

    Article  CAS  PubMed  Google Scholar 

  11. George AK, Shih A, Regan TJ. Effect of acute ketoacidosis on the myocardium in diabetes. Am J Med Sci. 1996;311(2):61–4.

    Article  CAS  PubMed  Google Scholar 

  12. Pedoto A, Caruso JE, Nandi J, Oler A, Hoffmann SP, Tassiopoulos AK, et al. Acidosis stimulates nitric oxide production and lung damage in rats. Am J Respir Crit Care Med. 1999;159(2):397–402.

    Article  CAS  PubMed  Google Scholar 

  13. Stengle M, Ledvinova L, Chvojka J, Benes J, Jarkovska D, Holas J, et al. Effects of clinically relevant acute hypercapnic and metabolic acidosis on the cardiovascular system: an experimental porcine study. Crit Care. 2013;17(6):R303.

    Article  Google Scholar 

  14. Balanos GM, Talbot NP, Dorrington KL, Robbins PA. Human pulmonary vascular response to four hours of hypercapnia and hypocapnia measured using Doppler echocardiography. J Appl Physiol. 2003;94:1543–51.

    Article  PubMed  Google Scholar 

  15. Thorens JB, Jolliet P, et al. Effects of rapid permissive hypercapnia on hemodynamics, gas exchange, and oxygen transport and consumption during mechanical ventilation for the acute respiratory distress syndrome. Intensive Care Med. 1996;22:182–91.

    Article  CAS  PubMed  Google Scholar 

  16. Berger DS, Fellner SK, Robinson KA, Vleasica K, Godoy IE, Shroff SG. Disparate effects of three types of extracellular acidosis on left ventricular function. Am J Physiol. 1999;276(2 Pt 2):582–94.

    Google Scholar 

  17. Ijland MM, Heunks LM, van der Hoeven JG. Bench-to-bedside review: hypercapnic acidosis in lung injury–from ‘permissive’ to ‘therapeutic. Crit Care. 2010;14(6):237.

    Article  PubMed  Google Scholar 

  18. Esau SA. Hypoxic, hypercapnic acidosis decreased tension and increased fatigue in hamster diaphragm muscle in vitro. Am Rev Respir Dis. 1989;139(6):1410–7.

    Article  CAS  PubMed  Google Scholar 

  19. Jaber S, Jung B, Sebbane M, Ramonatxo M, Capdevila X, Mercier J, et al. Alteration of the piglet diaphragm contractility in vivo and its recovery after acute hypercapnia. Anesthesiology. 2008;108(4):651–8.

    Article  PubMed  Google Scholar 

  20. Juan G, Calverley P, Talamo C, Schnader J, Roussos C. Effect of carbon dioxide on diaphragmatic function in human beings. N Engl J Med. 1984;310(14):874–9.

    Article  CAS  PubMed  Google Scholar 

  21. Coast JR, Shanely RA, Lawler JM, Herb RA. Lactic acidosis and diaphragmatic function in vitro. Am J Respir Crit Care Med. 1995;152(5 Pt 1):1648–52.

    Article  CAS  PubMed  Google Scholar 

  22. Refsum HE, Opdahl H, Leraand S. Effect of extreme metabolic acidosis on oxygen delivery capacity if the blood: an in vitro investigation of changes in the oxyhemoglobin dissociation curve in blood with pH values of approximately 6.30. Crit Care Med. 1997;25(9):1497–501.

    Article  CAS  PubMed  Google Scholar 

  23. Heijnen BHM, Elkhakoufi Y, et al. Influence of acidosis and hypoxia on liver ischemia and reperfusion injury in an in vivo rat model. J Appl Physiol. 2002;93(1):319–23.

    Article  PubMed  Google Scholar 

  24. Gunnerson KJ, Saul M, et al. Lactate versus non-lactate metabolic acidosis: a retrospective outcome evaluation of critically ill patients. Crit Care. 2006;10(1):R22.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Paz Y, Zegerman A, Sorkine P, Matot I. Severe acidosis does not predict fatal outcomes in intensive care unit patients: a retrospective analysis. J Crit Care. 2014;29(2):210–3.

    Article  PubMed  Google Scholar 

  26. Anderson LE, Henrich WL. Alkalemia associated morbidity and mortality in medical and surgical patients. South Med J. 1987;80:729–33.

    Article  CAS  PubMed  Google Scholar 

  27. Androgue HJ, Madias NE. Management of life-threatening acid-base disorders: second of two parts. N Engl J Med. 1998;338(2):107–11.

    Article  Google Scholar 

  28. Banga A, Khilnani GC. Post-hypercapnic alkalosis is associated with ventilator dependence and increase ICU stay. J COPD. 2009;6(6):437–40.

    Article  Google Scholar 

  29. Dubin A, Menises M, et al. Comparison of three different methods of evaluation of metabolic acid-base disorders. Crit Care Med. 2007;35(5):1264–70.

    Article  CAS  PubMed  Google Scholar 

  30. Middleton P, Kelly AM, et al. Agreement between arterial and central venous values for pH, bicarbonate, base excess, and lactate. Emerg Med J. 2006;23:622–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Brandenburg MA, Dire DJ. Comparison of arterial and venous blood gas values in the initial emergency department evaluation of patient with diabetic ketoacidosis. Ann Emerg Med. 1998;31(4):459–65.

    Article  CAS  PubMed  Google Scholar 

  32. Androgue HJ, Rashad MN, et al. Assessing acid-base status in circulatory failure: differences between arterial and central venous blood. N Engl J Med. 1989;320:1312–6.

    Article  Google Scholar 

  33. Weil MH, Rackow EC, et al. Difference in acid-base state between venous and arterial blood during cardiopulmonary resuscitation. N Engl J Med. 1986;315:153–6.

    Article  CAS  PubMed  Google Scholar 

  34. Vallee F, Mathe O, et al. Central venous-to-arterial carbon dioxide difference: an additional target for goal-directed therapy in septic shock? Intensive Care Med. 2008;34:2218–25.

    Article  PubMed  Google Scholar 

  35. Gunnerson KJ, Venkataraman R, Kellum JA. Chapter 20: Acid-base disorders. In: Murray PT, et al., editors. Intensive care in nephrology. Oxford: Tyler & Francis; 2006. p. 438–56.

    Google Scholar 

  36. Figge J, Jabor A, Kazda A, Fancle V. Anion gap and hypoalbuminemia. Crit Care Med. 1998;26(11):1807–10.

    Article  CAS  PubMed  Google Scholar 

  37. Kraut JA, Madias NE. Serum anion gap: its uses and limitations in clinical medicine. Clin J Am Soc Nephrol. 2007;2(1):162–74.

    Article  CAS  PubMed  Google Scholar 

  38. Levraut J, Bounatirou T, et al. Reliability of anion gap as an indicator of blood lactate in critically ill patients. Intensive Care Med. 1997;23(4):417–22.

    Article  CAS  PubMed  Google Scholar 

  39. Forni LG, McKinnon W, et al. Circulating anions usually associated with the Krebs cycle in patients with metabolic acidosis. Crit Care. 2005;9(5):R591–5.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Purrsell RA, Pudek M, et al. Derivation and validation of a formula to calculate the contribution of ethanol to the osmolal gap. Ann Emerg Med. 2001;38(6):653–9.

    Article  Google Scholar 

  41. Schelling JR, Howard RL, Winter SD, Linas SL. Increased osmolar gap in alcoholic ketoacidosis and lactic acidosis. An Intern Med. 1990;113(8):580–2.

    Article  CAS  Google Scholar 

  42. Lynd LD, Richardson KJ, et al. An evaluation of the osmole gap as a screening test for toxic alcohol poisoning. BMC Emerg Med. 2008;8(5)

    Google Scholar 

  43. Jurado RL, del Rio C, Nassar G, Navarette J, Pimental JL. Low anion gap. South Med J. 2008;91(7):624–9.

    Article  Google Scholar 

  44. Garcia-Alvarez M, Marik P, et al. Sepsis-associated hyperlactatemia. Crit Care. 2014;18:503.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Soifer JT, Kim HT. Approach to metabolic alkalosis. Emerg Med Clin North Am. 2014;32:453–63.

    Article  PubMed  Google Scholar 

  46. Luke RG, Galla JH. It is chloride depletion alkalosis, not contraction alkalosis. J Am Soc Nephrol. 2012;23(2):204–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wilson KC, Reardon C, Theodore AC, et al. Propylene glycol toxicity: a severe iatrogenic illness in ICU patients receiving IV benzodiazepines; a case series and prospective, observational pilot study. Chest. 2005;128(3):1674–81.

    Article  CAS  PubMed  Google Scholar 

  48. Diedrich DA, Brown DR. Analytic reviews: propofol infusion syndrome in the ICU. J Intensive Care Med. 2011;26(2):59–72.

    Article  PubMed  Google Scholar 

  49. Peixoto AJ, Alpern RJ. Treatment of severe metabolic alkalosis in a patient with congestive heart failure. Am J Kidney Dis. 2013;61(5):822–7.

    Article  PubMed  Google Scholar 

  50. Brain Trauma Foundation. Guidelines for the management of severe traumatic brain injury. J Neurotrauma. 2007;24(1):S1–106.

    Article  Google Scholar 

  51. Proudfoot AT, Krenzelok EP, et al. Position paper on urine alkalinization. Clin Toxicol. 2004;42(1):1–26.

    CAS  Google Scholar 

  52. Bradberry SM, Thanacoody HKR, et al. Management of the cardiovascular complications of tricyclic antidepressant poisoning. Toxicol Rev. 2005;24(3):195–204.

    Article  CAS  PubMed  Google Scholar 

  53. Hanka R, Lawn L, et al. The effects of maternal hypercapnia on foetal oxygenation and uterine blood flow in the pig. J Physiol. 1975;247(2):447–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Walker AM, Oakes GK, et al. Effects of hypercapnia on uterine and umbilical circulations in conscious pregnant sheep. J Appl Physiol. 1976;41(5 Pt. 1):727–33.

    Article  CAS  PubMed  Google Scholar 

  55. Meschia G. Fetal oxygenation and maternal ventilation. Clin Chest Med. 2011;32(1):15–9.

    Article  PubMed  Google Scholar 

  56. Reid F, Lobo DN, et al. (Ab)normal saline and physiological Hartmann’s solution: a randomized double-blind crossover study. Clin Sci. 2003;104:17–24.

    Article  CAS  Google Scholar 

  57. Chowdhury AH, Cox EF, et al. A randomised, controlled, double-blind crossover study on the effects of 2-L infusions of 0.9% Saline and PLasma-Lyte 148 on renal blood flow velocity and renal cortical tissue perfusion in healthy volunteers. Ann Surg. 2012;256(1):18–24.

    Article  PubMed  Google Scholar 

  58. Wu BU, Hwang JQ, et al. Lactated Ringer’s solution reduces systemic inflammation compared with saline in patients with acute pancreatitis. Clin Gastroenterol Hepatol. 2011;9:710–717.e1.

    Article  PubMed  Google Scholar 

  59. Waters JH, Gottlieb A, et al. Normal saline versus lactated Ringer’s solution for intraoperative fluid management in patients undergoing abdominal aortic aneurysm repair: an outcome study. Anesth Analg. 2001;93:817–22.

    Article  CAS  PubMed  Google Scholar 

  60. Shaw AD, Bagshaw SM, et al. Major complications, mortality, and resource utilization after open abdominal surgery: 0.9% saline compared to Plasma-Lyte. Ann Surg. 2012;255:821–9.

    Article  PubMed  Google Scholar 

  61. Yunos NM, Bellomo R, et al. Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA. 2012;308:1566–2.

    Article  CAS  PubMed  Google Scholar 

  62. Semler MW, Self WH, Wanderer JP, et al. Balanced crystalloids versus saline in critically ill adults. N Engl J Med. 2018;378:829–39.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ince C, Groeneveld ABJ, et al. The case for 0.9% NaCl: is the undefendable, defensible? Kidney Int. 2014;86:1087–95.

    Article  CAS  PubMed  Google Scholar 

  64. Forsythe SM, Schmidt GA. Sodium bicarbonate for the treatment of lactic acidosis. Chest. 2000;117:260–7.

    Article  CAS  PubMed  Google Scholar 

  65. Jaber S, Paugam C, Futier E, et al. Sodium bicarbonate therapy for patient with severe metabolic acidemia in the intensive care unit (BICAR-ICU): a multicenter, open label, randomized controlled phase 3 trial. Lancet. 2018;392:31–40.

    Article  CAS  PubMed  Google Scholar 

  66. Nakashima K, Yamashita T, et al. The effect of sodium bicarbonate on CBF and intracellular pH in man: stable Xe-CT and 31-P-MRS. Acta Neurol Scand. 1996;166:96–8.

    Article  CAS  Google Scholar 

  67. Bellingham AJ, Detter JC, et al. Regulatory mechanisms of hemoglobin oxygen affinity in acidosis and alkalosis. J Clin Invest. 1971;50:700–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cooper DJ, Walley KR, et al. Bicarbonate does not improve hemodynamics in critically ill patients who have lactic acidosis: a prospective, controlled clinical study. Ann Intern Med. 1990;112(7):492–8.

    Article  CAS  PubMed  Google Scholar 

  69. Mathieu D, Neviere R, et al. Effects of bicarbonate therapy on hemodynamics and tissue oxygenation in patients with lactic acidosis: a prospective, controlled clinical study. Crit Care Med. 1991;19(11):1352–6.

    Article  CAS  PubMed  Google Scholar 

  70. Okuda Y, Androgue HJ, et al. Counterproductive effects of sodium bicarbonate in diabetic ketoacidosis. J Clin Endocrinol Metab. 1996;81(1):314–20.

    CAS  PubMed  Google Scholar 

  71. Bersin RM, Chatterjee K, et al. Metabolic and hemodynamic consequences of sodium bicarbonate administration in patients with heart disease. Am J Med. 1989;87:7–14.

    Article  CAS  PubMed  Google Scholar 

  72. Pokaharel M, Block CA. Dysnatremia in the ICU. Curr Opin Crit Care. 2011;17:581–93.

    Article  PubMed  Google Scholar 

  73. Spasovski G, Vanholder R, Allolio B, et al. Clinical practice guidelines on diagnosis and treatment of hyponatremia. Nephrol Dial Transplant. 2014;29:ii1–39.

    Article  Google Scholar 

  74. Sterns RH, Hix JK, et al. Management of hyponatremia in the ICU. Chest. 2013;144(2):672–9.

    Article  PubMed  Google Scholar 

  75. Lindner G, Funk GC. Hypernatremia in critically ill patients. J Crit Care. 2013;28:216e11–20.

    Google Scholar 

  76. Adrogue HJ, Madias NE. Hypernatremia. N Engl J Med. 2000;342(20):1493–9.

    Article  CAS  PubMed  Google Scholar 

  77. Fang C, Mao J, et al. Fluid management of hypernatraemic dehydration to prevent cerebral oedema: a retrospective case control study of 97 children in China. J Paediatr Child Health. 2010;46(6):301–3.

    Article  PubMed  Google Scholar 

  78. Gennari FJ. Hypokalemia. N Engl J Med. 1998;339(7):451–8.

    Article  CAS  PubMed  Google Scholar 

  79. Slovis C, Jenkins R. ABC of clinical electrocardiography: conditions not primarily affecting the heart. BMJ. 2002;324(7349):1320–3.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Krahn LE, Lee J, Richardson JW, et al. Hypokalemia leasing to torsades de pointes. Munchausen’s disorder or bulimia nervosa? Gen Hosp Psychiatry. 1997;19:370–7.

    Article  CAS  PubMed  Google Scholar 

  81. Nordrehaug JE, Johannessen KA, Von Der Lippe G. Serum potassium concentration as a risk factor of ventricular arrhythmias early in acute myocardial infarction. Circulation. 1985;71:645–9.

    Article  CAS  PubMed  Google Scholar 

  82. Graham DY. Effectiveness and tolerance of “solid” vs. “liquid” potassium replacement therapy. In: Cameron JS, Glussock RL, Whelton A, editors. Kidney disease. New York: Marcel Dekker Inc; 1986.

    Google Scholar 

  83. Melikian AP, Cheng LK, Wright GJ, et al. Bioavailability of potassium from three dosage forms: suspension, capsule, and solution. J Clin Pharmacol. 1988;28:1046–50.

    Article  CAS  PubMed  Google Scholar 

  84. Hamill RH, Robinson LM, Wexler GJ, et al. Efficacy and safety of potassium infusion therapy in hypokalemic critically ill patients. Crit Care Med. 1991;19:613–7.

    Article  Google Scholar 

  85. Kruse JA, Carlson RW. Rapid correction of hypokalemia using concentrated intravenous potassium chloride infusions. Arch Intern Med. 1990;150(3):613–7.

    Article  CAS  PubMed  Google Scholar 

  86. Whang R, Oei TO, Aikawa JK, et al. Predictors of clinical hypomagnesemia: hypokalemia, hypophosphatemia, hyponatremia, and hypocalcemia. Arch Intern Med. 1984;144:1794–6.

    Article  CAS  PubMed  Google Scholar 

  87. Whang R, Whang DD, Ryan MP. Refractory potassium repletion: a consequence of magnesium deficiency. Arch Intern Med. 1992;152:40–5.

    Article  CAS  PubMed  Google Scholar 

  88. Alfonzo AV, Isles C, Geddes C, et al. Potassium disorders–clinical spectrum and emergency management. Resuscitation. 2006;70:10–25.

    Article  PubMed  Google Scholar 

  89. Allon M, Shanklin N. Effect of bicarbonate administration on plasma potassium in dialysis patients: interactions with insulin and albuterol. Am J Kidney Dis. 1996;28:508–14.

    Article  CAS  PubMed  Google Scholar 

  90. Parham WA, Mehdirad AA, Biermann KM, et al. Hyperkalemia revisited. Tex Heart Inst J. 2006;33(1):40–7.

    PubMed  PubMed Central  Google Scholar 

  91. Ahmed J, Weisberg LS. Hyperkalemia in dialysis patients. Semin Dial. 2001;14:348–56.

    Article  CAS  PubMed  Google Scholar 

  92. Fenton F, Smally AJ, Laut J. Hyperkalemia and digoxin toxicity in a patient with kidney failure. An Emerg Med. 1996;28(4):440–1.

    Article  CAS  Google Scholar 

  93. Hack JB, Woody JH, Lewis DE, et al. The effect of calcium chloride in treating hyperkalemia due to acute digoxin toxicity in a porcine model. J Toxicol Clin Toxicol. 2004;42(4):337–42.

    Article  CAS  PubMed  Google Scholar 

  94. Van Deusen SK, Birkhahn RH, Gaeta TJ. Treatment of hyperkalemia in a patient with unrecognized digitalis toxicity. J Toxicol Clin Toxicol. 2003;41(4):373–6.

    Article  PubMed  Google Scholar 

  95. Allon M, Dunlay R, Copkney C. Nebulized albuterol for acute hyperkalemia in patients on hemodialysis. Ann Intern Med. 1989;110(6):426–9.

    Article  CAS  PubMed  Google Scholar 

  96. Mahoney BA, Smith WA, Lo DS, et al. Emergency interventions for hyperkalemia. Cochrane Database Syst Rev. 2005;(2):CD003235.

    Google Scholar 

  97. Allon M, Copkney C. Albuterol and insulin for treatment of hyperkalemia in hemodialysis patients. Kidney Int. 1990;38:869–72.

    Article  CAS  PubMed  Google Scholar 

  98. Blumberg A, Weidmann P, Shaw S, et al. Effect of various therapeutic approaches on plasma potassium and major regulating factors in terminal renal failure. Am J Med. 1988;85(4):507–12.

    Article  CAS  PubMed  Google Scholar 

  99. Carvalhana V, Burry L, Lapinsky SE. Management of severe hyperkalemia without hemodialysis: case report and literature review. J Crit Care. 2006;21(4):316–21.

    Article  PubMed  Google Scholar 

  100. Lin JL, Lim PS, Leu ML, et al. Outcomes of severe hyperkalemia in cardiopulmonary resuscitation with concomitant hemodialysis. Intensive Care Med. 1994;20(4):287–90.

    Article  CAS  PubMed  Google Scholar 

  101. Gruy-Kapral C, Emmett M, Santa Ana CA, et al. Effect of single dose resin-cathartic therapy on serum potassium concentration in patients with end-stage renal disease. J Am Soc Nephrol. 1998;9(10):1924–30.

    Article  CAS  PubMed  Google Scholar 

  102. Lier H, Krep H, Schroeder S, et al. Preconditions of hemostasis in trauma: a review; the influence of acidosis, hypocalcemia, anemia, and hypothermia on functional hemostasis in trauma. J Trauma. 2008;65:951–60.

    PubMed  Google Scholar 

  103. Carlstedt F, Lind L. Hypocalcemic syndromes. Crit Care Clin. 2001;17(1):139–53.

    Article  CAS  PubMed  Google Scholar 

  104. Wei M, Taskapan H, Esbaei K, Jassal SV, Bargman JM, Oreopoulos DG. K/DOQI guideline requirements for calcium, phosphate, calcium phosphate product, and parathyroid hormone control in dialysis patients: can we achieve them? Int Urol Nephrol. 2006;39(3–4):739–49.

    Google Scholar 

  105. Ariyan CE, Sosa JA. Assessment and management of patients with abnormal calcium. Crit Care Med. 2004;32(4):S146–54.

    Article  PubMed  Google Scholar 

  106. Slomp J, Van Der Voort PHJ, Gerritsen RT, et al. Albumin adjusted calcium is not suitable for diagnosis of hyper- and hypocalcemia in the critically ill. Crit Care Med. 2003;31(5):1389–93.

    Article  CAS  PubMed  Google Scholar 

  107. Newman DB, Fidahussein SS, Kashiwagi DT, et al. Reversible cardiac dysfunction associated with hypocalcemia: a systematic review and meta-analysis of individual patient data. Heart Fail Rev. 2014;19:199–205.

    Article  CAS  PubMed  Google Scholar 

  108. Hurley K, Baggs D. Hypocalcemic cardiac failure in the emergency department. J Emerg Med. 2005;28(2):155–9.

    Article  PubMed  Google Scholar 

  109. Chavan CB, Sharada K, Rao HB, et al. Hypocalcemia as a cause of reversible cardiomyopathy with ventricular tachycardia. Ann Intern Med. 2007;147(7):541–2.

    Article  Google Scholar 

  110. Desai T, Carlson R, Thill-Baharozian M, et al. A direct relationship between ionized calcium and arterial pressure among patients in an intensive care unit. Crit Care Med. 1988;16(6):578–82.

    Article  CAS  PubMed  Google Scholar 

  111. RuDusky B. ECG abnormalities associated with hypocalcemia. Chest. 2001;119:668–9.

    Article  CAS  PubMed  Google Scholar 

  112. Maier JD, Levine SN. Hypercalcemia in the intensive care unit: a review of pathophysiology, diagnosis, and modern therapy. J Intensive Care Med. 2013;30(5):235–52.

    Article  PubMed  Google Scholar 

  113. Swaminathan R. Magnesium metabolism and its disorders. Clin Biochem Rev. 2003;24:47–110.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Ayuk J, Gittoes NJ. How should hypomagnesaemia be investigated and treated? Clin Endocrinol (Oxf). 2011;65(6):743–6.

    Article  CAS  Google Scholar 

  115. Tong GM, Rude RK. Magnesium deficiency in critical illness. J Intensive Care Med. 2005;20(1):3–17.

    Article  PubMed  Google Scholar 

  116. Noronha JL, Matuschak GM. Magnesium in critical illness: metabolism, assessment, and treatment. Intensive Care Med. 2002;28(6):667–79.

    Article  PubMed  Google Scholar 

  117. Shiber JR, Mattu A. Serum phosphate abnormalities in the emergency department. J Emerg Med. 2002;23(4):395–400.

    Article  PubMed  Google Scholar 

  118. Kraft MD, Btaiche IF, Sacks GS, et al. Treatment of electrolyte disorders in adult patients in the intensive care unit. Am J Health-Syst Pharm. 2005;62:1663–82.

    Article  CAS  PubMed  Google Scholar 

  119. Charron T, Bernard F, Skrobik Y, et al. Intravenous phosphate in the intensive care unit: more aggressive repletion regimens for moderate and severe hypophosphatemia. Intensive Care Med. 2003;29(8):1273–8.

    Article  PubMed  Google Scholar 

  120. Suzuki S, Egi M, Schneider AG, et al. Hypophosphatemia in critically ill patients. J Crit Care. 2013;28(4):536e9–19.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sage P. Whitmore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Whitmore, S.P., Gunnerson, K.J. (2020). Acid-Base and Electrolyte Disorders in Emergency Critical Care. In: Shiber, J., Weingart, S. (eds) Emergency Department Critical Care. Springer, Cham. https://doi.org/10.1007/978-3-030-28794-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28794-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28792-4

  • Online ISBN: 978-3-030-28794-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics