Skip to main content

The Aging Gut Microbiota

  • Chapter
  • First Online:
How Fermented Foods Feed a Healthy Gut Microbiota

Abstract

Researchers have detailed changes in host–intestinal microbe homeostasis in elderly humans, but it is not clear whether gut microbiota influence these changes, or if maintaining intestinal homeostasis would support overall health with age. Insight into age-related changes in hosts and their microbiota has been gained by studying vertebrate models such as mice, rats, and African turquoise killifish, and invertebrates, including Drosophila melanogaster and Caenorhabditis elegans. Studies using aged, germ-free models show that intestinal microbiota do not initiate all age-related pathologies, suggesting that host-specific changes may be a factor in declining host–intestinal microbe homeostasis with age. Although it is not clear how model-based host–intestinal microbe research applies to the elderly, understanding the interplay between aging hosts and gut microbiota will be critical toward the design of therapeutic interventions. Since research on aging microbiota systems is an emerging field, further developments may come through attempts to translate model findings to humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed, M., Prasad, J., Gill, H., Stevenson, L., & Gopal, P. (2007). Impact of consumption of different levels of Bifidobacterium lactis HN019 on the intestinal microflora of elderly human subjects. The Journal of Nutrition, Health & Aging, 11(1), 26–31.

    CAS  Google Scholar 

  • Ahrne, S., Nobaek, S., Jeppsson, B., Adlerberth, I., Wold, A. E., & Molin, G. (1998). The normal Lactobacillus flora of healthy human rectal and oral mucosa. Journal of Applied Microbiology, 85(1), 88–94.

    Article  CAS  PubMed  Google Scholar 

  • Arumugam, M., Raes, J., Pelletier, E., Le Paslier, D., Yamada, T., Mende, D. R., Fernandes, G. R., Tap, J., Bruls, T., Batto, J. M., Bertalan, M., Borruel, N., Casellas, F., Fernandez, L., Gautier, L., Hansen, T., Hattori, M., Hayashi, T., Kleerebezem, M., Kurokawa, K., Leclerc, M., Levenez, F., Manichanh, C., Nielsen, H. B., Nielsen, T., Pons, N., Poulain, J., Qin, J., Sicheritz-Ponten, T., Tims, S., Torrents, D., Ugarte, E., Zoetendal, E. G., Wang, J., Guarner, F., Pedersen, O., de Vos, W. M., Brunak, S., Dore, J., Meta, H. I. T. C., Antolin, M., Artiguenave, F., Blottiere, H. M., Almeida, M., Brechot, C., Cara, C., Chervaux, C., Cultrone, A., Delorme, C., Denariaz, G., Dervyn, R., Foerstner, K. U., Friss, C., van de Guchte, M., Guedon, E., Haimet, F., Huber, W., van Hylckama-Vlieg, J., Jamet, A., Juste, C., Kaci, G., Knol, J., Lakhdari, O., Layec, S., Le Roux, K., Maguin, E., Merieux, A., Melo Minardi, R., M’Rini, C., Muller, J., Oozeer, R., Parkhill, J., Renault, P., Rescigno, M., Sanchez, N., Sunagawa, S., Torrejon, A., Turner, K., Vandemeulebrouck, G., Varela, E., Winogradsky, Y., Zeller, G., Weissenbach, J., Ehrlich, S. D., & Bork, P. (2011). Enterotypes of the human gut microbiome. Nature, 473(7346), 174–180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Backhed, F., Fraser, C. M., Ringel, Y., Sanders, M. E., Sartor, R. B., Sherman, P. M., Versalovic, J., Young, V., & Finlay, B. B. (2012). Defining a healthy human gut microbiome: Current concepts, future directions, and clinical applications. Cell Host & Microbe, 12(5), 611–622.

    Article  CAS  Google Scholar 

  • Bartosch, S., Fite, A., Macfarlane, G. T., & McMurdo, M. E. (2004). Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Applied and Environmental Microbiology, 70(6), 3575–3581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beausoleil, M., Fortier, N., Guenette, S., L’Ecuyer, A., Savoie, M., Franco, M., Lachaine, J., & Weiss, K. (2007). Effect of a fermented milk combining Lactobacillus acidophilus CL1285 and Lactobacillus casei in the prevention of antibiotic-associated diarrhea: A randomized, double-blind, placebo-controlled trial. Canadian Journal of Gastroenterology, 21(11), 732–736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biagi, E., Nylund, L., Candela, M., Ostan, R., Bucci, L., Pini, E., Nikkila, J., Monti, D., Satokari, R., Franceschi, C., Brigidi, P., & De Vos, W. (2010). Through ageing, and beyond: Gut microbiota and inflammatory status in seniors and centenarians. PLoS One, 5(5), e10667.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Biagi, E., Candela, M., Fairweather-Tait, S., Franceschi, C., & Brigidi, P. (2012). Ageing of the human metaorganism: The microbial counterpart. Age, 34(1), 247–267.

    Article  PubMed  Google Scholar 

  • Biagi, E., Franceschi, C., Rampelli, S., Severgnini, M., Ostan, R., Turroni, S., Consolandi, C., Quercia, S., Scurti, M., Monti, D., Capri, M., Brigidi, P., & Candela, M. (2016). Gut microbiota and extreme longevity. Current Biology, 26(11), 1480–1485.

    Article  CAS  PubMed  Google Scholar 

  • Biagi, E., Rampelli, S., Turroni, S., Quercia, S., Candela, M., & Brigidi, P. (2017). The gut microbiota of centenarians: Signatures of longevity in the gut microbiota profile. Mechanisms of Ageing and Development, 165(Pt B), 180–184.

    Article  PubMed  Google Scholar 

  • Bien, J., Palagani, V., & Bozko, P. (2013). The intestinal microbiota dysbiosis and Clostridium difficile infection: Is there a relationship with inflammatory bowel disease? Therapeutic Advances in Gastroenterology, 6(1), 53–68.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bing, X., Gerlach, J., Loeb, G., & Buchon, N. (2018). Nutrient-dependent impact of microbes on Drosophila suzukii development. MBio, 9(2), e02199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broderick, N. A., Buchon, N., & Lemaitre, B. (2014). Microbiota-induced changes in drosophila melanogaster host gene expression and gut morphology. MBio, 5(3), e01117–e01114.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Buchon, N., Osman, D., David, F. P., Fang, H. Y., Boquete, J. P., Deplancke, B., & Lemaitre, B. (2013). Morphological and molecular characterization of adult midgut compartmentalization in Drosophila. Cell Reports, 3(5), 1725–1738.

    Article  CAS  PubMed  Google Scholar 

  • Buford, T. W. (2017). (Dis)Trust your gut: The gut microbiome in age-related inflammation, health, and disease. Microbiome, 5(1), 80.

    Article  PubMed  PubMed Central  Google Scholar 

  • Byri, S., Misra, T., Syed, Z. A., Batz, T., Shah, J., Boril, L., Glashauser, J., Aegerter-Wilmsen, T., Matzat, T., Moussian, B., Uv, A., & Luschnig, S. (2015). The triple-repeat protein anakonda controls epithelial tricellular junction formation in Drosophila. Developmental Cell, 33(5), 535–548.

    Article  CAS  PubMed  Google Scholar 

  • Candela, M., Biagi, E., Maccaferri, S., Turroni, S., & Brigidi, P. (2012). Intestinal microbiota is a plastic factor responding to environmental changes. Trends in Microbiology, 20(8), 385–391.

    Article  CAS  PubMed  Google Scholar 

  • Candela, M., Biagi, E., Brigidi, P., O’Toole, P. W., & De Vos, W. M. (2014). Maintenance of a healthy trajectory of the intestinal microbiome during aging: A dietary approach. Mechanisms of Ageing and Development, 136–137, 70–75.

    Article  PubMed  Google Scholar 

  • Cao, Y., Shen, J., & Ran, Z. H. (2014). Association between Faecalibacterium prausnitzii reduction and inflammatory bowel disease: A meta-analysis and systematic review of the literature. Gastroenterology Research and Practice, 2014, 872725.

    Google Scholar 

  • Charlesworth, C. J., Smit, E., Lee, D. S. H., Alramadhan, F., & Odden, M. C. (2015). Polypharmacy among adults aged 65 years and older in the United States: 1988-2010. Journals of Gerontology Series A-Biological Sciences and Medical Sciences, 70(8), 989–995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaston, J. M., Dobson, A. J., Newell, P. D., & Douglas, A. E. (2016). Host genetic control of the microbiota mediates the Drosophila nutritional phenotype. Applied and Environmental Microbiology, 82(2), 671–679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claesson, M. J., Cusack, S., O’Sullivan, O., Greene-Diniz, R., de Weerd, H., Flannery, E., Marchesi, J. R., Falush, D., Dinan, T., Fitzgerald, G., Stanton, C., van Sinderen, D., O’Connor, M., Harnedy, N., O’Connor, K., Henry, C., O’Mahony, D., Fitzgerald, A. P., Shanahan, F., Twomey, C., Hill, C., Ross, R. P., & O’Toole, P. W. (2011). Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proceedings of the National Academy of Sciences of the United States of America, 108(Suppl 1), 4586–4591.

    Article  CAS  PubMed  Google Scholar 

  • Claesson, M. J., Jeffery, I. B., Conde, S., Power, S. E., O’Connor, E. M., Cusack, S., Harris, H. M. B., Coakley, M., Lakshminarayanan, B., O’Sullivan, O., Fitzgerald, G. F., Deane, J., O’Connor, M., Harnedy, N., O’Connor, K., O’Mahony, D., van Sinderen, D., Wallace, M., Brennan, L., Stanton, C., Marchesi, J. R., Fitzgerald, A. P., Shanahan, F., Hill, C., Ross, R. P., & O’Toole, P. W. (2012). Gut microbiota composition correlates with diet and health in the elderly. Nature, 488(7410), 178–184.

    Article  CAS  PubMed  Google Scholar 

  • Clark, R. I., Salazar, A., Yamada, R., Fitz-Gibbon, S., Morselli, M., Alcaraz, J., Rana, A., Rera, M., Pellegrini, M., Ja, W. W., & Walker, D. W. (2015). Distinct shifts in microbiota composition during Drosophila aging impair intestinal function and drive mortality. Cell Reports, 12(10), 1656–1667.

    Article  CAS  PubMed  Google Scholar 

  • Clements, S. J., & Carding, S. R. (2018). Diet, the intestinal microbiota, and immune health in aging. Critical Reviews in Food Science and Nutrition, 58(4), 651–661.

    Article  PubMed  Google Scholar 

  • Collado, M. C., Rautava, S., Aakko, J., Isolauri, E., & Salminen, S. (2016). Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Scientific Reports, 6, 23129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conley, M. N., Wong, C. P., Duyck, K. M., Hord, N., Ho, E., & Sharpton, T. J. (2016). Aging and serum MCP-1 are associated with gut microbiome composition in a murine model. PeerJ, 4, e1854.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Costello, E. K., Lauber, C. L., Hamady, M., Fierer, N., Gordon, J. I., & Knight, R. (2009). Bacterial community variation in human body habitats across space and time. Science, 326(5960), 1694–1697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Vries, M. C., Vaughan, E. E., Kleerebezem, M., & de Vos, W. M. (2006). Lactobacillus plantarum- survival, functional and potential probiotic properties in the human intestinal tract. International Dairy Journal, 16(9), 1018–1028.

    Article  CAS  Google Scholar 

  • de Goffau, M. C., Lager, S., Sovio, U., Gaccioli, F., Cook, E., Peacock, S. J., Parkhill, J., Charnock-Jones, D. S., Smith, G. C. S. (2019). Human placenta has no microbiome but can contain potential pathogens. Nature, 572(7769), 329–334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dambroise, E., Monnier, L., Ruisheng, L., Aguilaniu, H., Joly, J. S., Tricoire, H., & Rera, M. (2016). Two phases of aging separated by the Smurf transition as a public path to death. Scientific Reports, 6, 23523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darby, T. M., & Jones, R. M. (2017). Beneficial influences of Lactobacillus plantarum on human health and disease. In Y. Ringel & W. A. Walker (Eds.), The microbiota in gastrointestinal pathophysiology (pp. 109–117). Boston: Academic.

    Chapter  Google Scholar 

  • David, L. A., Maurice, C. F., Carmody, R. N., Gootenberg, D. B., Button, J. E., Wolfe, B. E., Ling, A. V., Devlin, A. S., Varma, Y., Fischbach, M. A., Biddinger, S. B., Dutton, R. J., & Turnbaugh, P. J. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505(7484), 559–563.

    Article  CAS  PubMed  Google Scholar 

  • Dominy, S. S., Lynch, C., Ermini, F., Benedyk, M., Marczyk, A., Konradi, A., Nguyen, M., Haditsch, U., Raha, D., Griffin, C., Holsinger, L. J., Arastu-Kapur, S., Kaba, S., Lee, A., Ryder, M. I., Potempa, B., Mydel, P., Hellvard, A., Adamowicz, K., Hasturk, H., Walker, G. D., Reynolds, E. C., Faull, R. L. M., Curtis, M. A., Dragunow, M., & Potempa, J. (2019). Porphyromonas gingivalis in Alzheimer’s disease brains: Evidence for disease causation and treatment with small-molecule inhibitors. Science Advances, 5(1), eaau3333.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Douglas, A. E. (2018). Which experimental systems should we use for human microbiome science? PLoS Biology, 16(3), e2005245. https://doi.org/10.1371/journal.pbio.2005245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duncan, S. H., & Flint, H. J. (2013). Probiotics and prebiotics and health in ageing populations. Maturitas, 75(1), 44–50.

    Article  CAS  PubMed  Google Scholar 

  • Elderman, M., Sovran, B., Hugenholtz, F., Graversen, K., Huijskes, M., Houtsma, E., Belzer, C., Boekschoten, M., de Vos, P., Dekker, J., Wells, J., & Faas, M. (2017). The effect of age on the intestinal mucus thickness, microbiota composition and immunity in relation to sex in mice. PLoS One, 12(9), e0184274.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fishman, J. E., Levy, G., Alli, V., Sheth, S., Lu, Q., & Deitch, E. A. (2013). Oxidative modification of the intestinal mucus layer is a critical but unrecognized component of trauma hemorrhagic shock-induced gut barrier failure. American Journal of Physiology. Gastrointestinal and Liver Physiology, 304(1), G57–G63.

    Article  CAS  PubMed  Google Scholar 

  • Franceschi, C., & Campisi, J. (2014). Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 69(Suppl 1), S4–S9.

    Article  PubMed  Google Scholar 

  • Franceschi, C., Bonafe, M., Valensin, S., Olivieri, F., De Luca, M., Ottaviani, E., & De Benedictis, G. (2000). Inflamm-aging. An evolutionary perspective on immunosenescence. Annals of the New York Academy of Sciences, 908, 244–254.

    Article  CAS  PubMed  Google Scholar 

  • Franceschi, C., Capri, M., Monti, D., Giunta, S., Olivieri, F., Sevini, F., Panouraia, M. P., Invidia, L., Celani, L., Scurti, M., Cevenini, E., Castellani, G. C., & Salvioli, S. (2007). Inflammaging and anti-inflammaging: A systemic perspective on aging and longevity emerged from studies in humans. Mechanisms of Ageing and Development, 128(1), 92–105.

    Article  CAS  PubMed  Google Scholar 

  • Franceschi, C., Ostan, R., & Santoro, A. (2018). Nutrition and Inflammation: Are centenarians similar to individuals on calorie-restricted diets? Annual Review of Nutrition, 38, 329–356.

    Article  CAS  PubMed  Google Scholar 

  • Fransen, F., van Beek, A. A., Borghuis, T., Aidy, S. E., Hugenholtz, F., van der Gaast-de Jongh, C., Savelkoul, H. F. J., De Jonge, M. I., Boekschoten, M. V., Smidt, H., Faas, M. M., & de Vos, P. (2017). Aged gut microbiota contributes to systemical inflammaging after transfer to germ-free mice. Frontiers in Immunology, 8, 1385.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fukunaga, A., Uematsu, H., & Sugimoto, K. (2005). Influences of aging on taste perception and oral somatic sensation. The Journals of Gerontology: Series A, 60(1), 109–113.

    Article  Google Scholar 

  • Fukushima, Y., Miyaguchi, S., Yamano, T., Kaburagi, T., Iino, H., Ushida, K., & Sato, K. (2007). Improvement of nutritional status and incidence of infection in hospitalised, enterally fed elderly by feeding of fermented milk containing probiotic Lactobacillus johnsonii La1 (NCC533). The British Journal of Nutrition, 98(5), 969–977.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Gonzalez, A. P., Ritter, A. D., Shrestha, S., Andersen, E. C., Yilmaz, L. S., & Walhout, A. J. M. (2017). Bacterial Metabolism Affects the C. elegans Response to Cancer Chemotherapeutics. Cell, 169(3), 431–441. e438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gelino, S., Chang, J. T., Kumsta, C., She, X., Davis, A., Nguyen, C., Panowski, S., & Hansen, M. (2016). Intestinal autophagy improves healthspan and longevity in C. elegans during dietary restriction. PLOS Genetics, 12(7), e1006135.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gill, H. S., Rutherfurd, K. J., Cross, M. L., & Gopal, P. K. (2001). Enhancement of immunity in the elderly by dietary supplementation with the probiotic Bifidobacterium lactis HN019. The American Journal of Clinical Nutrition, 74(6), 833–839.

    Article  CAS  PubMed  Google Scholar 

  • Guillemard, E., Tondu, F., Lacoin, F., & Schrezenmeir, J. (2010). Consumption of a fermented dairy product containing the probiotic Lactobacillus casei DN-114001 reduces the duration of respiratory infections in the elderly in a randomised controlled trial. The British Journal of Nutrition, 103(1), 58–68.

    Article  CAS  PubMed  Google Scholar 

  • Guo, L., Karpac, J., Tran, S. L., & Jasper, H. (2014). PGRP-SC2 promotes gut immune homeostasis to limit commensal dysbiosis and extend lifespan. Cell, 156(1–2), 109–122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hallstrom, M., Eerola, E., Vuento, R., Janas, M., & Tammela, O. (2004). Effects of mode of delivery and necrotising enterocolitis on the intestinal microflora in preterm infants. European Journal of Clinical Microbiology & Infectious Diseases, 23(6), 463–470.

    Article  CAS  Google Scholar 

  • Han, B., Sivaramakrishnan, P., Lin, C. C. J., Neve, I. A. A., He, J. Q., Tay, L. W. R., Sowa, J. N., Sizovs, A., Du, G. W., Wang, J., Herman, C., & Wang, M. C. (2017). Microbial genetic composition tunes host longevity. Cell, 169(7), 1249–1262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi, H., Sakamoto, M., Kitahara, M., & Benno, Y. (2003). Molecular analysis of fecal microbiota in elderly individuals using 16S rDNA library and T-RFLP. Microbiology and Immunology, 47(8), 557–570.

    Article  CAS  PubMed  Google Scholar 

  • Henderson, B., & Nibali, L. (2016). The human microbiota and chronic disease: Dysbiosis as a cause of human pathology. Hoboken, NJ: Wiley Blackwell.

    Google Scholar 

  • Hickson, M., D’Souza, A. L., Muthu, N., Rogers, T. R., Want, S., Rajkumar, C., & Bulpitt, C. J. (2007). Use of probiotic Lactobacillus preparation to prevent diarrhoea associated with antibiotics: Randomised double blind placebo controlled trial. BMJ, 335(7610), 80–83.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L., Canani, R. B., Flint, H. J., Salminen, S., Calder, P. C., & Sanders, M. E. (2014). Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews. Gastroenterology & Hepatology, 11(8), 506–514.

    Article  Google Scholar 

  • Hooper, L. V., Littman, D. R., & Macpherson, A. J. (2012). Interactions between the microbiota and the immune system. Science, 336(6086), 1268–1273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hopkins, M. J., & Macfarlane, G. T. (2002). Changes in predominant bacterial populations in human faeces with age and with Clostridium difficile infection. Journal of Medical Microbiology, 51(5), 448–454.

    Article  CAS  PubMed  Google Scholar 

  • Hopkins, M. J., Sharp, R., & Macfarlane, G. T. (2001). Age and disease related changes in intestinal bacterial populations assessed by cell culture, 16S rRNA abundance, and community cellular fatty acid profiles. Gut, 48(2), 198–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Human Microbiome Project Consortium (2012). Structure, function and diversity of the healthy human microbiome. Nature, 486(7402), 207–214.

    Google Scholar 

  • Jackson, M. A., Jeffery, I. B., Beaumont, M., Bell, J. T., Clark, A. G., Ley, R. E., O’Toole, P. W., Spector, T. D., & Steves, C. J. (2016). Signatures of early frailty in the gut microbiota. Genome Medicine, 8(1), 8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jeffery, I. B., Lynch, D. B., & O’Toole, P. W. (2016). Composition and temporal stability of the gut microbiota in older persons. The ISME Journal, 10(1), 170–182.

    Article  CAS  PubMed  Google Scholar 

  • Jimenez, E., Fernandez, L., Marin, M. L., Martin, R., Odriozola, J. M., Nueno-Palop, C., Narbad, A., Olivares, M., Xaus, J., & Rodriguez, J. M. (2005). Isolation of commensal bacteria from umbilical cord blood of healthy neonates born by cesarean section. Current Microbiology, 51(4), 270–274.

    Article  CAS  PubMed  Google Scholar 

  • Johansson, M. E. (2014). Mucus layers in inflammatory bowel disease. Inflammatory Bowel Diseases, 20(11), 2124–2131.

    Article  PubMed  Google Scholar 

  • Johansson, M. L., Molin, G., Jeppsson, B., Nobaek, S., Ahrne, S., & Bengmark, S. (1993). Administration of different Lactobacillus strains in fermented oatmeal soup: In vivo colonization of human intestinal mucosa and effect on the indigenous flora. Applied and Environmental Microbiology, 59(1), 15–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johansson, M. E. V., Phillipson, M., Petersson, J., Velcich, A., Holm, L., & Hansson, G. C. (2008). The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proceedings of the National Academy of Sciences of the United States of America, 105(39), 15064–15069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johansson, M. E. V., Larsson, J. M. H., & Hansson, G. C. (2011). The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proceedings of the National Academy of Sciences of the United States of America, 108, 4659–4665.

    Article  CAS  PubMed  Google Scholar 

  • Jones, C., Badger, S. A., Regan, M., Clements, B. W., Diamond, T., Parks, R. W., & Taylor, M. A. (2013). Modulation of gut barrier function in patients with obstructive jaundice using probiotic LP299v. European Journal of Gastroenterology & Hepatology, 25(12), 1424–1430.

    Article  Google Scholar 

  • Keebaugh, E. S., & Ja, W. W. (2016). Microbes without borders: Decompartmentalization of the aging gut. Cell Host & Microbe, 19(2), 133–135.

    Article  CAS  Google Scholar 

  • Keebaugh, E. S., Yamada, R., Obadia, B., Ludington, W. B., & Ja, W. W. (2018). Microbial quantity impacts Drosophila nutrition, development, and lifespan. iScience, 4, 247–259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, S., & Jazwinski, S. M. (2018). The gut microbiota and healthy aging: A mini-review. Gerontology, 64(6), 513–520.

    Article  CAS  PubMed  Google Scholar 

  • Klarin, B., Johansson, M. L., Molin, G., Larsson, A., & Jeppsson, B. (2005). Adhesion of the probiotic bacterium Lactobacillus plantarum 299v onto the gut mucosa in critically ill patients: A randomised open trial. Critical Care, 9(3), R285–R293.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kleerebezem, M., Boekhorst, J., van Kranenburg, R., Molenaar, D., Kuipers, O. P., Leer, R., Tarchini, R., Peters, S. A., Sandbrink, H. M., Fiers, M. W. E. J., Stiekema, W., Lankhorst, R. M. K., Bron, P. A., Hoffer, S. M., Groot, M. N. N., Kerkhoven, R., de Vries, M., Ursing, B., de Vos, W. M., & Siezen, R. J. (2003). Complete genome sequence of Lactobacillus plantarum WCFS1. Proceedings of the National Academy of Sciences of the United States of America, 100(4), 1990–1995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koenig, J. E., Spor, A., Scalfone, N., Fricker, A. D., Stombaugh, J., Knight, R., Angenent, L. T., & Ley, R. E. (2011). Succession of microbial consortia in the developing infant gut microbiome. Proceedings of the National Academy of Sciences of the United States of America, 108(Suppl 1), 4578–4585.

    Article  CAS  PubMed  Google Scholar 

  • Kong, F., Hua, Y., Zeng, B., Ning, R., Li, Y., & Zhao, J. (2016). Gut microbiota signatures of longevity. Current Biology, 26(18), R832–R833.

    Article  CAS  PubMed  Google Scholar 

  • Kong, F., Deng, F., Li, Y., & Zhao, J. (2018). Identification of gut microbiome signatures associated with longevity provides a promising modulation target for healthy aging. Gut Microbes, 10(2), 210–215.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar, M., Babaei, P., Ji, B., & Nielsen, J. (2016). Human gut microbiota and healthy aging: Recent developments and future prospective. Nutrition and Healthy Aging, 4(1), 3–16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lahtinen, S. J., Tammela, L., Korpela, J., Parhiala, R., Ahokoski, H., Mykkanen, H., & Salminen, S. J. (2009). Probiotics modulate the bifidobacterium microbiota of elderly nursing home residents. Age (Dordrecht, Netherlands), 31(1), 59–66.

    Article  Google Scholar 

  • Lee, G. C., Daniels, K., Lawson, K. A., Attridge, R. T., Lewis, J., & Frei, C. R. (2013). Age-based outpatient antibiotic prescribing in the United States from 2000 to 2010. Value in Health, 16(3), A78–A78.

    Article  Google Scholar 

  • Lee, G. C., Reveles, K. R., Attridge, R. T., Lawson, K. A., Mansi, I. A., Lewis, J. S., & Frei, C. R. (2014). Outpatient antibiotic prescribing in the United States: 2000 to 2010. BMC Medicine, 12, 96.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, H., Qi, Y., & Jasper, H. (2016). Preventing age-related decline of gut compartmentalization limits microbiota dysbiosis and extends lifespan. Cell Host & Microbe, 19(2), 240–253.

    Article  CAS  Google Scholar 

  • Lim, C. J., Kong, D. C. M., & Stuart, R. L. (2014). Reducing inappropriate antibiotic prescribing in the residential care setting: Current perspectives. Clinical Interventions in Aging, 9, 165–177.

    PubMed  PubMed Central  Google Scholar 

  • Lloyd-Price, J., Abu-Ali, G., & Huttenhower, C. (2016). The healthy human microbiome. Genome Medicine, 8(1), 51.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lovat, L. B. (1996). Age related changes in gut physiology and nutritional status. Gut, 38(3), 306–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K., & Knight, R. (2012). Diversity, stability and resilience of the human gut microbiota. Nature, 489(7415), 220–230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, M., & Wang, Z. (2018). Linking gut microbiota to aging process: A new target for anti-aging. Food Science and Human Wellness, 7(2), 111–119.

    Article  Google Scholar 

  • Macpherson, A. J., & Harris, N. L. (2004). Interactions between commensal intestinal bacteria and the immune system. Nature Reviews. Immunology, 4(6), 478–485.

    Article  CAS  PubMed  Google Scholar 

  • Magrone, T., & Jirillo, E. (2013). The interaction between gut microbiota and age-related changes in immune function and inflammation. Immunity & Ageing, 10(1), 31.

    Article  CAS  Google Scholar 

  • Malamitsi-Puchner, A., Protonotariou, E., Boutsikou, T., Makrakis, E., Sarandakou, A., & Creatsas, G. (2005). The influence of the mode of delivery on circulating cytokine concentrations in the perinatal period. Early Human Development, 81(4), 387–392.

    Article  CAS  PubMed  Google Scholar 

  • Man, A. L., Gicheva, N., & Nicoletti, C. (2014). The impact of ageing on the intestinal epithelial barrier and immune system. Cellular Immunology, 289(1–2), 112–118.

    Article  CAS  PubMed  Google Scholar 

  • Marianes, A., & Spradling, A. C. (2013). Physiological and stem cell compartmentalization within the Drosophila midgut. eLife, 2, e00886.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mariat, D., Firmesse, O., Levenez, F., Guimaraes, V. D., Sokol, H., Dore, J., Corthier, G., & Furet, J. P. (2009). The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiology, 9, 123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin, R., Makino, H., Yavuz, A. C., Ben-Amor, K., Roelofs, M., Ishikawa, E., Kubota, H., Swinkels, S., Sakai, T., Oishi, K., Kushiro, A., & Knol, J. (2016). Early-life events, including mode of delivery and type of feeding, siblings and gender, shape the developing gut microbiota. PLoS One, 11(6), e0158498.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matsumoto, M., Kurihara, S., Kibe, R., Ashida, H., & Benno, Y. (2011). Longevity in mice Is promoted by probiotic-induced suppression of colonic senescence dependent on upregulation of gut bacterial polyamine production. PLoS One, 6(8), e23652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuo, K., Ota, H., Akamatsu, T., Sugiyama, A., & Katsuyama, T. (1997). Histochemistry of the surface mucous gel layer of the human colon. Gut, 40(6), 782–789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maynard, C., & Weinkove, D. (2018). The gut microbiota and ageing. Sub-Cellular Biochemistry, 90, 351–371.

    Article  CAS  PubMed  Google Scholar 

  • McNaught, C. E., Woodcock, N. P., Anderson, A. D., & MacFie, J. (2005). A prospective randomised trial of probiotics in critically ill patients. Clinical Nutrition, 24(2), 211–219.

    Article  PubMed  Google Scholar 

  • Metchnikoff, E. (1908). The prolongation of life: Optimistic studies. New York and London: GP Putnam’s Sons.

    Google Scholar 

  • Miquel, S., Martin, R., Rossi, O., Bermudez-Humaran, L. G., Chatel, J. M., Sokol, H., Thomas, M., Wells, J. M., & Langella, P. (2013). Faecalibacterium prausnitzii and human intestinal health. Current Opinion in Microbiology, 16(3), 255–261.

    Article  CAS  PubMed  Google Scholar 

  • Mueller, S., Saunier, K., Hanisch, C., Norin, E., Alm, L., Midtvedt, T., Cresci, A., Silvi, S., Orpianesi, C., Verdenelli, M. C., Clavel, T., Koebnick, C., Zunft, H.-J. F., Doré, J., & Blaut, M. (2006). Differences in fecal microbiota in different European study populations in relation to age, gender, and country: A cross-sectional study. Applied and Environmental Microbiology, 72(2), 1027–1033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagpal, R., Mainali, R., Ahmadi, S., Wang, S., Singh, R., Kavanagh, K., Kitzman, D. W., Kushugulova, A., Marotta, F., & Yadav, H. (2018). Gut microbiome and aging: Physiological and mechanistic insights. Nutrition and Healthy Aging, 4(4), 267–285.

    Article  PubMed  PubMed Central  Google Scholar 

  • Negele, K., Heinrich, J., Borte, M., von Berg, A., Schaaf, B., Lehmann, I., Wichmann, H. E., Bolte, G., & L. S. Group. (2004). Mode of delivery and development of atopic disease during the first 2 years of life. Pediatric Allergy and Immunology, 15(1), 48–54.

    Article  PubMed  Google Scholar 

  • Nguyen, T. L. A., Vieira-Silva, S., Liston, A., & Raes, J. (2015). How informative is the mouse for human gut microbiota research? Disease Models & Mechanisms, 8(1), 1–16.

    Article  CAS  Google Scholar 

  • O’Hara, A. M., & Shanahan, F. (2006). The gut flora as a forgotten organ. EMBO Reports, 7(7), 688–693.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Obadia, B., Guvener, Z. T., Zhang, V., Ceja-Navarro, J. A., Brodie, E. L., Ja, W. W., & Ludington, W. B. (2017). Probabilistic invasion underlies natural gut microbiome stability. Current Biology, 27(13), 1999–2006. e1998.

    Article  CAS  PubMed  Google Scholar 

  • Odamaki, T., Kato, K., Sugahara, H., Hashikura, N., Takahashi, S., Xiao, J. Z., Abe, F., & Osawa, R. (2016). Age-related changes in gut microbiota composition from newborn to centenarian: A cross-sectional study. BMC Microbiology, 16, 90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ouwehand, A. C., Bergsma, N., Parhiala, R., Lahtinen, S., Gueimonde, M., Finne-Soveri, H., Strandberg, T., Pitkala, K., & Salminen, S. (2008). Bifidobacterium microbiota and parameters of immune function in elderly subjects. FEMS Immunology and Medical Microbiology, 53(1), 18–25.

    Article  CAS  PubMed  Google Scholar 

  • Overend, G., Luo, Y., Henderson, L., Douglas, A. E., Davies, S. A., & Dow, J. A. (2016). Molecular mechanism and functional significance of acid generation in the Drosophila midgut. Scientific Reports, 6, 27242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pais, I. S., Valente, R. S., Sporniak, M., & Teixeira, L. (2018). Drosophila melanogaster establishes a species-specific mutualistic interaction with stable gut-colonizing bacteria. PLoS Biology, 16(7), e2005710.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Palmer, C., Bik, E. M., DiGiulio, D. B., Relman, D. A., & Brown, P. O. (2007). Development of the human infant intestinal microbiota. PLoS Biology, 5(7), e177.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perez-Munoz, M. E., Arrieta, M. C., Ramer-Tait, A. E., & Walter, J. (2017). A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: Implications for research on the pioneer infant microbiome. Microbiome, 5(1), 48.

    Article  PubMed  PubMed Central  Google Scholar 

  • Qin, J. J., Li, R. Q., Raes, J., Arumugam, M., Burgdorf, K. S., Manichanh, C., Nielsen, T., Pons, N., Levenez, F., Yamada, T., Mende, D. R., Li, J. H., Xu, J. M., Li, S. C., Li, D. F., Cao, J. J., Wang, B., Liang, H. Q., Zheng, H. S., Xie, Y. L., Tap, J., Lepage, P., Bertalan, M., Batto, J. M., Hansen, T., Le Paslier, D., Linneberg, A., Nielsen, H. B., Pelletier, E., Renault, P., Sicheritz-Ponten, T., Turner, K., Zhu, H. M., Yu, C., Li, S. T., Jian, M., Zhou, Y., Li, Y. R., Zhang, X. Q., Li, S. G., Qin, N., Yang, H. M., Wang, J., Brunak, S., Dore, J., Guarner, F., Kristiansen, K., Pedersen, O., Parkhill, J., Weissenbach, J., Bork, P., Ehrlich, S. D., Wang, J., & MetaHIT Consortium (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 464(7285), 59–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin, X. F., Sheth, S. U., Sharpe, S. M., Dong, W., Lu, Q., Xu, D. Z., & Deitch, E. A. (2011). The mucus layer Is critical in protecting against ischemia-reperfusion-mediated gut injury and in the restitution of gut barrier function. Shock, 35(3), 275–281.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rampelli, S., Candela, M., Turroni, S., Biagi, E., Collino, S., Franceschi, C., O’Toole, P. W., & Brigidi, P. (2013). Functional metagenomic profiling of intestinal microbiome in extreme ageing. Aging (Albany NY), 5(12), 902–912.

    Article  CAS  Google Scholar 

  • Rautava, S., Luoto, R., Salminen, S., & Isolauri, E. (2012). Microbial contact during pregnancy, intestinal colonization and human disease. Nature Reviews. Gastroenterology & Hepatology, 9(10), 565–576.

    Article  CAS  Google Scholar 

  • Rehman, T. (2012). Role of the gut microbiota in age-related chronic inflammation. Endocrine, Metabolic & Immune Disorders Drug Targets, 12(4), 361–367.

    Article  CAS  Google Scholar 

  • Rera, M., Clark, R. I., & Walker, D. W. (2012). Intestinal barrier dysfunction links metabolic and inflammatory markers of aging to death in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 109(52), 21528–21533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rera, M., Vallot, C., & Lefrancois, C. (2018). The Smurf transition: New insights on ageing from end-of-life studies in animal models. Current Opinion in Oncology, 30(1), 38–44.

    Article  PubMed  Google Scholar 

  • Resnik-Docampo, M., Koehler, C. L., Clark, R. I., Schinaman, J. M., Sauer, V., Wong, D. M., Lewis, S., D’Alterio, C., Walker, D. W., & Jones, D. L. (2017). Tricellular junctions regulate intestinal stem cell behaviour to maintain homeostasis. Nature Cell Biology, 19(1), 52–59.

    Article  CAS  PubMed  Google Scholar 

  • Resnik-Docampo, M., Sauer, V., Schinaman, J. M., Clark, R. I., Walker, D. W., & Jones, D. L. (2018). Keeping it tight: The relationship between bacterial dysbiosis, septate junctions, and the intestinal barrier in Drosophila. Fly (Austin), 12(1), 34–40.

    Article  Google Scholar 

  • Riaz Rajoka, M. S., Zhao, H., Li, N., Lu, Y., Lian, Z., Shao, D., Jin, M., Li, Q., Zhao, L., & Shi, J. (2018). Origination, change, and modulation of geriatric disease-related gut microbiota during life. Applied Microbiology and Biotechnology, 102(19), 8275–8289.

    Article  CAS  PubMed  Google Scholar 

  • Ridley, E. V., Wong, A. C., Westmiller, S., & Douglas, A. E. (2012). Impact of the resident microbiota on the nutritional phenotype of Drosophila melanogaster. PLoS One, 7(5), e36765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez, J. M., Murphy, K., Stanton, C., Ross, R. P., Kober, O. I., Juge, N., Avershina, E., Rudi, K., Narbad, A., Jenmalm, M. C., Marchesi, J. R., & Collado, M. C. (2015). The composition of the gut microbiota throughout life, with an emphasis on early life. Microbial Ecology in Health and Disease, 26, 26050.

    Article  PubMed  Google Scholar 

  • Rosen, C. E., & Palm, N. W. (2017). Functional classification of the gut microbiota: The key to cracking the microbiota composition code: Functional classifications of the gut microbiota reveal previously hidden contributions of indigenous gut bacteria to human health and disease. BioEssays, 39(12), 1700032.

    Google Scholar 

  • Rothschild, D., Weissbrod, O., Barkan, E., Kurilshikov, A., Korem, T., Zeevi, D., Costea, P. I., Godneva, A., Kalka, I. N., Bar, N., Shilo, S., Lador, D., Vila, A. V., Zmora, N., Pevsner-Fischer, M., Israeli, D., Kosower, N., Malka, G., Wolf, B. C., Avnit-Sagi, T., Lotan-Pompan, M., Weinberger, A., Halpern, Z., Carmi, S., Fu, J., Wijmenga, C., Zhernakova, A., Elinav, E., & Segal, E. (2018). Environment dominates over host genetics in shaping human gut microbiota. Nature, 555, 210–215.

    Article  CAS  PubMed  Google Scholar 

  • Rutayisire, E., Huang, K., Liu, Y., & Tao, F. (2016). The mode of delivery affects the diversity and colonization pattern of the gut microbiota during the first year of infants’ life: A systematic review. BMC Gastroenterology, 16(1), 86.

    Article  PubMed  PubMed Central  Google Scholar 

  • Salazar, A. M., Resnik-Docampo, M., Ulgherait, M., Clark, R. I., Shirasu-Hiza, M., Jones, D. L., & Walker, D. W. (2018). Intestinal snakeskin limits microbial dysbiosis during aging and promotes longevity. iScience, 9, 229–243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santoro, A., Ostan, R., Candela, M., Biagi, E., Brigidi, P., Capri, M., & Franceschi, C. (2018). Gut microbiota changes in the extreme decades of human life: A focus on centenarians. Cellular and Molecular Life Sciences, 75(1), 129–148.

    Article  CAS  PubMed  Google Scholar 

  • Sarkar, D., & Fisher, P. B. (2006). Molecular mechanisms of aging-associated inflammation. Cancer Letters, 236(1), 13–23.

    Article  CAS  PubMed  Google Scholar 

  • Scott, T. A., Quintaneiro, L. M., Norvaisas, P., Lui, P. P., Wilson, M. P., Leung, K. Y., Herrera-Dominguez, L., Sudiwala, S., Pessia, A., Clayton, P. T., Bryson, K., Velagapudi, V., Mills, P. B., Typas, A., Greene, N. D. E., & Cabreiro, F. (2017). Host-Microbe Co-metabolism Dictates Cancer Drug Efficacy in C. elegans. Cell, 169(3), 442–456. e418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith, P., Willemsen, D., Popkes, M., Metge, F., Gandiwa, E., Reichard, M., et al. (2017). Regulation of life span by the gut microbiota in the short-lived African turquoise killifish. Elife. 6.

    Google Scholar 

  • Sokol, H., Pigneur, B., Watterlot, L., Lakhdari, O., Bermúdez-Humarán, L. G., Gratadoux, J.-J., Blugeon, S., Bridonneau, C., Furet, J.-P., Corthier, G., Grangette, C., Vasquez, N., Pochart, P., Trugnan, G., Thomas, G., Blottière, H. M., Doré, J., Marteau, P., Seksik, P., & Langella, P. (2008). Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proceedings of the National Academy of Sciences of the United States of America, 105(43), 16731–16736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suryavanshi, M. V., Paul, D., Doijad, S. P., Bhute, S. S., Hingamire, T. B., Gune, R. P., & Shouche, Y. S. (2017). Draft genome sequence of Lactobacillus plantarum strains E2C2 and E2C5 isolated from human stool culture. Standards in Genomic Sciences, 12, 15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Swidsinski, A., Loening-Baucke, V., Theissig, F., Engelhardt, H., Bengmark, S., Koch, S., Lochs, H., & Dorffel, Y. (2007a). Comparative study of the intestinal mucus barrier in normal and inflamed colon. Gut, 56(3), 343–350.

    Article  PubMed  Google Scholar 

  • Swidsinski, A., Sydora, B. C., Doerffel, Y., Loening-Baucke, V., Vaneechoutte, M., Lupicki, M., Scholze, J., Lochs, H., & Dieleman, L. A. (2007b). Viscosity gradient within the mucus layer determines the mucosal barrier function and the spatial organization of the intestinal microbiota. Inflammatory Bowel Diseases, 13(8), 963–970.

    Article  PubMed  Google Scholar 

  • Tamburini, S., Shen, N., Wu, H. C., & Clemente, J. C. (2016). The microbiome in early life: Implications for health outcomes. Nature Medicine, 22(7), 713–722.

    Article  CAS  PubMed  Google Scholar 

  • Thevaranjan, N., Puchta, A., Schulz, C., Naidoo, A., Szamosi, J. C., Verschoor, C. P., Loukov, D., Schenck, L. P., Jury, J., Foley, K. P., Schertzer, J. D., Larche, M. J., Davidson, D. J., Verdu, E. F., Surette, M. G., & Bowdish, D. M. E. (2017). Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host & Microbe, 21(4), 455–466. e454.

    Article  CAS  Google Scholar 

  • Tran, L., & Greenwood-Van Meerveld, B. (2013). Age-Associated Remodeling of the Intestinal Epithelial Barrier. Journals of Gerontology Series A-Biological Sciences and Medical Sciences, 68(9), 1045–1056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tricoire, H., & Rera, M. (2015). A new, discontinuous 2 phases of aging model: Lessons from Drosophila melanogaster. PLoS One, 10(11), e0141920.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Turchet, P., Laurenzano, M., Auboiron, S., & Antoine, J. M. (2003). Effect of fermented milk containing the probiotic Lactobacillus casei DN-114001 on winter infections in free-living elderly subjects: A randomised, controlled pilot study. The Journal of Nutrition, Health & Aging, 7(2), 75–77.

    CAS  Google Scholar 

  • Turnbaugh, P. J., Ley, R. E., Hamady, M., Fraser-Liggett, C. M., Knight, R., & Gordon, J. I. (2007). The human microbiome project. Nature, 449(7164), 804–810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Beek, A. A., Sovran, B., Hugenholtz, F., Meijer, B., Hoogerland, J. A., Mihailova, V., van der Ploeg, C., Belzer, C., Boekschoten, M. V., Hoeijmakers, J. H., Vermeij, W. P., de Vos, P., Wells, J. M., Leenen, P. J., Nicoletti, C., Hendriks, R. W., & Savelkoul, H. F. (2016). Supplementation with Lactobacillus plantarum WCFS1 prevents decline of mucus barrier in colon of accelerated aging Ercc1(-/Delta7) mice. Frontiers in Immunology, 7, 408.

    PubMed  PubMed Central  Google Scholar 

  • van Tongeren, S. P., Slaets, J. P., Harmsen, H. J., & Welling, G. W. (2005). Fecal microbiota composition and frailty. Applied and Environmental Microbiology, 71(10), 6438–6442.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Varum, F. J. O., Veiga, F., Sousa, J. S., & Basit, A. W. (2012). Mucus thickness in the gastrointestinal tract of laboratory animals. The Journal of Pharmacy and Pharmacology, 64(2), 218–227.

    Article  CAS  PubMed  Google Scholar 

  • Vesa, T., Pochart, P., & Marteau, P. (2000). Pharmacokinetics of Lactobacillus plantarum NCIMB 8826, Lactobacillus fermentum KLD, and Lactococcus lactis MG 1363 in the human gastrointestinal tract. Alimentary Pharmacology & Therapeutics, 14(6), 823–828.

    Article  CAS  Google Scholar 

  • Walker, A. (2007). Genome watch—Say hello to our little friends. Nature Reviews. Microbiology, 5(8), 572–573.

    Article  CAS  PubMed  Google Scholar 

  • Wong, A. C., Dobson, A. J., & Douglas, A. E. (2014). Gut microbiota dictates the metabolic response of Drosophila to diet. The Journal of Experimental Biology, 217(Pt 11), 1894–1901.

    Article  PubMed  PubMed Central  Google Scholar 

  • Woodmansey, E. J. (2007). Intestinal bacteria and ageing. Journal of Applied Microbiology, 102(5), 1178–1186.

    Article  CAS  PubMed  Google Scholar 

  • Woodmansey, E. J., McMurdo, M. E., Macfarlane, G. T., & Macfarlane, S. (2004). Comparison of compositions and metabolic activities of fecal microbiotas in young adults and in antibiotic-treated and non-antibiotic-treated elderly subjects. Applied and Environmental Microbiology, 70(10), 6113–6122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, G. D., Chen, J., Hoffmann, C., Bittinger, K., Chen, Y. Y., Keilbaugh, S. A., Bewtra, M., Knights, D., Walters, W. A., Knight, R., Sinha, R., Gilroy, E., Gupta, K., Baldassano, R., Nessel, L., Li, H., Bushman, F. D., & Lewis, J. D. (2011). Linking long-term dietary patterns with gut microbial enterotypes. Science, 334(6052), 105–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada, R., Deshpande, S. A., Bruce, K. D., Mak, E. M., & Ja, W. W. (2015). Microbes promote amino acid harvest to rescue undernutrition in Drosophila. Cell Rep, 10(6), 865–872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yatsunenko, T., Rey, F. E., Manary, M. J., Trehan, I., Dominguez-Bello, M. G., Contreras, M., Magris, M., Hidalgo, G., Baldassano, R. N., Anokhin, A. P., Heath, A. C., Warner, B., Reeder, J., Kuczynski, J., Caporaso, J. G., Lozupone, C. A., Lauber, C., Clemente, J. C., Knights, D., Knight, R., & Gordon, J. I. (2012). Human gut microbiome viewed across age and geography. Nature, 486(7402), 222–227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • You, J. L., & Yaqoob, P. (2012). Evidence of immunomodulatory effects of a novel probiotic, Bifidobacterium longum bv. infantis CCUG 52486. FEMS Immunology and Medical Microbiology, 66(3), 353–362.

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann, M., Zimmermann-Kogadeeva, M., Wegmann, R., & Goodman, A. L. (2019). Separating host and microbiome contributions to drug pharmacokinetics and toxicity. Science, 363(6427), eaat9931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William W. Ja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Keebaugh, E.S., Williams, L.D., Ja, W.W. (2019). The Aging Gut Microbiota. In: Azcarate-Peril, M., Arnold, R., Bruno-Bárcena, J. (eds) How Fermented Foods Feed a Healthy Gut Microbiota. Springer, Cham. https://doi.org/10.1007/978-3-030-28737-5_12

Download citation

Publish with us

Policies and ethics