Skip to main content

Parametric Trajectory Libraries for Online Motion Planning with Application to Soft Robots

  • Conference paper
  • First Online:
Robotics Research

Abstract

In this paper we propose a method for online motion planning of constrained nonlinear systems. The method consists of three steps: the offline generation of a library of parametric trajectories via direct trajectory optimization, the online search in the library for the best candidate solution to the optimal control problem we aim to solve, and the online refinement of this trajectory. The last phase of this process takes advantage of a sensitivity-like analysis and guarantees to comply with the first-order approximation of the constraints even in case of active set changes. Efficiency of the trajectory generation process is discussed and a valid strategy to minimize online computations is proposed; together with this, an effective procedure for searching the candidate trajectory is also presented. As a case study, we examine optimal control of a planar soft manipulator performing a pick-and-place task: through simulations and experiments, we show how crucial online computation times are to achieve considerable energy savings in the presence of variability of the task to perform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The accompanying video can be found at https://www.youtube.com/watch?v=AEDXAZmoPuw.

References

  1. Andersson, J.: A general-purpose software framework for dynamic optimization. Ph.D. thesis, Arenberg Doctoral School, KU Leuven (2013)

    Google Scholar 

  2. Betts, J.T.: Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, vol. 19. Siam (2010)

    Google Scholar 

  3. Catalano, M.G., Grioli, G., Farnioli, E., Serio, A., Piazza, C., Bicchi, A.: Adaptive synergies for the design and control of the pisa/iit softhand. Int. J. Robot. Res. 33, 768–782 (2014)

    Article  Google Scholar 

  4. Della Santina, C., Bianchi, M., Grioli, G., Angelini, F., Catalano, M., Garabini, M., Bicchi, A.: Controlling soft robots. IEEE Robot. Autom. Mag. 24, 75–83 (2017)

    Google Scholar 

  5. Diehl, M., Bock, H.G., Schlöder, J.P., Findeisen, R., Nagy, Z., Allgöwer, F.: Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations. J. Process Control 12(4), 577–585 (2002)

    Article  Google Scholar 

  6. Diehl, M., Gros, S.: Numerical optimization of dynamic systems (draft) (2016). https://www.syscop.de/files/2015ws/noc-dae/00-book.pdf

  7. Fiacco, A.V.: Introduction to Sensitivity and Stability Analysis in Nonlinear Programming. Academic Press, Inc., by Springer, Berlin (1984)

    Google Scholar 

  8. Ganesh, N., Biegler, L.T.: A reduced hessian strategy for sensitivity analysis of optimal flowsheets. AIChE J. 33(2), 282–296 (1987)

    Article  Google Scholar 

  9. Garabini, M., Passaglia, A., Belo, F., Salaris, P., Bicchi, A.: Optimality principles in variable stiffness control: the VSA hammer. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3770–3775 (2011)

    Google Scholar 

  10. Haddadin, S., Huber, F., Albu-Schäffer, A.: Optimal control for exploiting the natural dynamics of variable stiffness robots. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3347–3354. IEEE, St. Paul (2012)

    Google Scholar 

  11. Kim, S., Laschi, C., Trimmer, B.: Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol. 31(5), 287–294 (2013)

    Article  Google Scholar 

  12. Liu, C., Atkeson, C.G.: Standing balance control using a trajectory library. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3031–3036. IEEE, ST. Louis (2009)

    Google Scholar 

  13. Mordatch, I., Todorov, E., Popović, Z.: Discovery of complex behaviors through contact-invariant optimization. ACM Trans. Graph. 31(4), 43 (2012)

    Article  Google Scholar 

  14. Nocedal, J., Wright, S.: Numerical Optimization. Springer Science and Business Media, New York (2006)

    Google Scholar 

  15. Schaal, S., Atkeson, C.G.: Learning control in robotics. IEEE Robot. Autom. Mag. 17(2), 20–29 (2010)

    Article  Google Scholar 

  16. Silva, M.F., Machado, J.T.: A literature review on the optimization of legged robots. J. Vib. Control 18(12), 1753–1767 (2012)

    Article  MathSciNet  Google Scholar 

  17. Stolle, M., Atkeson, C.G.: Policies based on trajectory libraries. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3344–3349 (2006)

    Google Scholar 

  18. Tedrake, R., Manchester, I.R., Tobenkin, M., Roberts, J.W.: LQR-trees: feedback motion planning via sums-of-squares verification. Int. J. Robot. Res. 29(8), 1038–1052 (2010)

    Google Scholar 

  19. Vanderborght, B., Albu-Schäffer, A., Bicchi, A., Burdet, E., Caldwell, D.G., Carloni, R., Catalano, M., Eiberger, O., Friedl, W., Ganesh, G., et al.: Variable impedance actuators: a review. Robot. Auton. Syst. 61(12), 1601–1614 (2013)

    Article  Google Scholar 

  20. Vanderborght, B., Verrelst, B., Van Ham, R., Van Damme, M., Lefeber, D., Duran, B.M.Y., Beyl, P.: Exploiting natural dynamics to reduce energy consumption by controlling the compliance of soft actuators. Int. J. Robot. Res. 25, 343–358 (2006)

    Google Scholar 

  21. Verscheure, D., Demeulenaere, B., Swevers, J., De Schutter, J., Diehl, M.: Practical time-optimal trajectory planning for robots: a convex optimization approach. IEEE Trans. Autom. Control (2008)

    Google Scholar 

  22. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106, 25–57 (2006)

    Google Scholar 

  23. Zavala, V.M., Biegler, L.T.: The advanced-step nmpc controller: optimality, stability and robustness. Automatica 45(1), 86–93 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobia Marcucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marcucci, T., Garabini, M., Gasparri, G.M., Artoni, A., Gabiccini, M., Bicchi, A. (2020). Parametric Trajectory Libraries for Online Motion Planning with Application to Soft Robots. In: Amato, N., Hager, G., Thomas, S., Torres-Torriti, M. (eds) Robotics Research. Springer Proceedings in Advanced Robotics, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-28619-4_67

Download citation

Publish with us

Policies and ethics