Skip to main content

Male Reproductive Physiology

  • Chapter
  • First Online:
Urologic Principles and Practice

Part of the book series: Springer Specialist Surgery Series ((SPECIALIST))

Abstract

The male reproductive tract is uniquely suited to support the structure and function of male gametes, including sperm production and transport of sperm into the ejaculate. Knowledge of the anatomical relations of the male genital tract is crucial for effective performance of surgical procedures. Male reproductive physiology provides the basis for effective medical care of the male infertility patients. Both anatomy and physiology of the male reproductive tract with references to clinically important factors are presented in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. de Kretser DM, Meinhardt A, Meehan T, Phillips DJ, O’Bryan MK, Loveland KA. The roles of inhibin and related peptides in gonadal function. Mol Cell Endocrinol. 2000;161:43–6.

    Article  PubMed  Google Scholar 

  2. Clarke IJ, Rao A, Fallest PC, Shupnik MA. Transcription rate of the follicle stimulating hormone (FSH) beta subunit gene is reduced by inhibin in sheep but this does not fully explain the decrease in mRNA. Mol Cell Endocrinol. 1993;91:211–6.

    Article  CAS  PubMed  Google Scholar 

  3. Kolb BA, Stanczyk FZ, Sokol RZ. Serum inhibin B levels in males with gonadal dysfunction. Fertil Steril. 2000;74:234–8.

    Article  CAS  PubMed  Google Scholar 

  4. von Eckardstein S, Simoni M, Bergmann M, Weinbauer GF, Gassner P, Schepers AG, Nieschlag E. Serum inhibin B in combination with serum follicle-stimulating hormone (FSH) is a more sensitive marker than serum FSH alone for impaired spermatogenesis in men, but cannot predict the presence of sperm in testicular tissue samples. J Clin Endocrinol Metab. 1999;84:2496–501.

    CAS  PubMed  Google Scholar 

  5. O’Shaughnessy PJ, Fleming LM, Jackson G, Hochgeschwender U, Reed P, Baker PJ. Adrenocorticotropic hormone directly stimulates testosterone production by the fetal and neonatal mouse testis. Endocrinology. 2003;144:3279–84.

    Article  CAS  PubMed  Google Scholar 

  6. Mazzi C, Bazzoni N, Martinelli I, Morandi G, Mainini E, Petrozzino MR, Mazzi CA. Evaluation of the pituitary-gonadal axis in men with growth hormone-secreting adenomas: comparison with nonfunctioning adenomas. Int J Androl. 1996;19(Suppl 1):42.

    Google Scholar 

  7. Hayes FJ, Crowley WFJ. Gonadotropin pulsations across development. Horm Res. 1988;49:163–8.

    Google Scholar 

  8. Santen RJ. Is aromatization of testosterone to estradiol required for inhibition of luteinizing hormone secretion in men? J Clin Invest. 1975;56:1555–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Korach KS, Couse JF, Curtis SW, Washburn TF, Lindzey J, Kimbro KS, Eddy EM, Migliaccio S, Snedeker SM, Lubahn DB, Schomberg DW, Smith E. Estrogen receptor gene disruption: molecular characterization and experimental and clinical phenotypes. Recent Prog Horm Res. 1996;51:159–86.

    CAS  PubMed  Google Scholar 

  10. Gao T, McPhaul MJ. Functional activities of the A and B forms of the human androgen receptor in response to androgen receptor agonists and antagonists. Mol Endocrinol. 1998;12:654–63.

    Article  CAS  PubMed  Google Scholar 

  11. de Santa Barbara P, Moniot B, Poulat F, Berta P. Expression and subcellular localization of SF-1, SOX9, WT1, and AMH proteins during early human testicular development. Dev Dyn. 2000;217:293–8.

    Article  PubMed  Google Scholar 

  12. Parker KL, Schedl A, Schimmer BP. Gene interactions in gonadal development. Annu Rev Physiol. 1999;61:417–33.

    Article  CAS  PubMed  Google Scholar 

  13. Kidokoro T, Matoba S, Hiramatsu R, Fujisawa M, Kanai-Azuma M, Taya C, Kurohmaru M, Hayashi Y, Kanai Y, Yonekawa H. Influence on spatiotemporal patterns of a male-specific Sox0 activation by ectopic Sry expression during early phases of testis differentiation in mice. Dev Biol. 2005;278:511–25.

    Article  CAS  PubMed  Google Scholar 

  14. Lee MM, Donahoe PK. Mullerian inhibiting substance: a gonadal hormone with multiple functions. Endocr Rev. 1993;14:152–64.

    CAS  PubMed  Google Scholar 

  15. Ikeda Y. SF-1: a key regulator of development and function in the mammalian reproductive system. Acta Paediatr Jpn. 1996;38:412–9.

    Article  CAS  PubMed  Google Scholar 

  16. Levallet J, Pakarinen P, Huhtaniemi IT. Follicle-stimulating hormone ligand and receptor mutations, and gonadal dysfunction. Arch Med Res. 1999;30:486–94.

    Article  CAS  PubMed  Google Scholar 

  17. Tapanainen JS, Aittomaki K, Min J, Vaskivuo T, Huhtaniemi I. Men homozygous for an inactivating mutation of the follicle-stimulating hormone (FSH) receptor gene present variable suppression of spermatogenesis and fertility. Nat Genet. 1997;15:205–6.

    Article  CAS  PubMed  Google Scholar 

  18. Pavlovich CP, King P, Goldstein M, Schlegel PN. Evidence of a treatable endocrinopathy in infertile men. J Urol. 2001;165:837–41.

    Article  CAS  PubMed  Google Scholar 

  19. Kissel H, Timokhina I, Hardy MP, Rothschild G, Tajima Y, Soares V, Angeles M, Whitlow SR, Manova K, Besmer P. Point mutation in kit receptor tyrosine kinase reveals essential roles for kit signaling in spermatogenesis and oogenesis without affecting other kit responses. EMBO J. 2000;19:1312–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Main KM, Schmidt IM, Skakkebaek NE. A possible role for reproductive hormones in newborn boys: progressive hypogonadism without the postnatal testosterone peak. J Clin Endocrinol Metab. 2000;85:4905–7.

    Article  CAS  PubMed  Google Scholar 

  21. Bartke A. Role of growth hormone and prolactin in the control of reproduction: what are we learning from transgenic and knock-out animals? Steroids. 1999;64:598–604.

    Article  CAS  PubMed  Google Scholar 

  22. Clement K, Vaisse C, Lahlou S, Cabrol S, Pelloux V, Cassuto D, Gourmelen M, Dina C, Chambaz J, Lacorte JM, Basdevant A, Bougneres P, Lebouc Y, Froguel P, Guy-Grand B. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature. 1998;392:398–401.

    Article  CAS  PubMed  Google Scholar 

  23. Dearth RK, Hiney JK, Dees WL. Leptin acts centrally to induce the prepubertal secretion of luteinizing hormone in the female rat. Peptides. 2000;21:387–92.

    Article  CAS  PubMed  Google Scholar 

  24. Tena-Sempere M, Pinilla L, Gonzalez LC, Navarro J, Dieguez C, Casanueva FF, Aguilar E. In vitro pituitary and testicular effects of the leptin-related synthetic peptide leptin (116–130) amide involve actions both similar to and distinct from those of the native leptin molecule in the adult rat. Eur J Endocrinol. 2000;142:406–10.

    Article  CAS  PubMed  Google Scholar 

  25. Ford WC, North K, Taylor H, Farrow A, Hull MG, Golding J. Increasing paternal age is associated with delayed conception in a large population of fertile couples: evidence for declining fecundity in older men. Hum Reprod. 2000;15:1703–8.

    Article  CAS  PubMed  Google Scholar 

  26. Aitken RJ, Smith TB, Jobling MS, Baker MA, De luliis GN. Oxidative stress and male reproductive health. Asian J Androl. 2014;16:31–8.

    Article  CAS  PubMed  Google Scholar 

  27. Tishler PV. Diameter of testicles. N Engl J Med. 1971;285:1489.

    CAS  PubMed  Google Scholar 

  28. Winter JSD, Faiman C. Pituitary-gonadal relations in male children and adolescents. Pediatr Res. 1972;6:126–31.

    Article  CAS  PubMed  Google Scholar 

  29. Schweitzer R. Uber die bedeutung der vascularisation, der binnendruckes und der zwischenzellen fur die biologie des hodens. Z Anat Entwicklungsgesch. 1929;89:775–96.

    Article  Google Scholar 

  30. Davis AG, Horowitz AM. Age-related differences in the response of the isolated testicular capsule of the rat to norepinephrine, acetylcholine and prostaglandins. J Reprod Fertil. 1978;54:269–74.

    Article  CAS  PubMed  Google Scholar 

  31. Free MJ, Jaffe RA, Morford DE. Sperm transport through the rete testis in anaesthetized rats: role of the testicular capsule and effect of gonadotropins and prostaglandins. Biol Reprod. 1980;22:1073–8.

    Article  CAS  PubMed  Google Scholar 

  32. Jarow JP. Clinical significance of intratesticular arterial anatomy. J Urol. 1991;145:777–9.

    Article  CAS  PubMed  Google Scholar 

  33. Schlegel PN, Su LM. Physiological consequences of testicular sperm extraction. Hum Reprod. 1997;12:1688–92.

    Article  CAS  PubMed  Google Scholar 

  34. Setchell BP, Brooks DE. Anatomy, vasculature, innervation and fluids of the male reproductive tract. New York: Raven Press, Ltd.; 1988.

    Google Scholar 

  35. Tash JA, McCallum S, Hardy MP, Knudsen B, Schlegel PN. Men with nonobstructive azoospermia have Leydig cell hypertrophy but not hyperplasia. J Urol. 2002;168:1068–70.

    Article  PubMed  Google Scholar 

  36. Lennox B, Ahmad KN. The total length of tubules in the human testis. J Anat. 1970;107:191.

    CAS  PubMed  Google Scholar 

  37. Roosen-Runge EC, Holstein AF. The human rete testis. Cell Tissue Res. 1978;189:409–33.

    Article  CAS  PubMed  Google Scholar 

  38. Mitchell GAG. The innervation of the kidney, ureter, testicle and epididymis. J Anat. 1935;70:10.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Linzell JL, Setchell BP. Metabolism, sperm and fluid production of the isolated perfused testis of the sheep and goat. J Physiol. 1969;201:129–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pettersson S, Soderholm B, Persson JE, Ericksson S, Fritjofsson A. Testicular blood flow in man measured with venous occlusion plethysmography and xenon-133. Scand J Urol Nephrol. 1973;7:115–9.

    Article  CAS  PubMed  Google Scholar 

  41. Fritjofsson A, Persson JE, Pettersson S. Testicular blood flow in man measured with xenon-133. Scand J Urol Nephrol. 1969;3:276–80.

    Article  CAS  PubMed  Google Scholar 

  42. Free MJ. Blood supply to the testis and its role in local exchange and transport of hormones. New York: Academic Press; 1977.

    Book  Google Scholar 

  43. Gunn SA, Gould TC. Vasculature of the testes and adnexa. In: Greep RO, Astwood EB, editors. Handbook of physiology. Baltimore: The Williams & Wilkins Co.; 1975. p. 117.

    Google Scholar 

  44. Harrison RG, Barclay AE. The distribution of the testicular artery (internal spermatic artery) to the human testis. Br J Urol. 1948;20:5.

    Article  Google Scholar 

  45. Bayard F, Boulard PY, Huc A, Pontonnier F. Arterio-venous transfer of testosterone in the spermatic cord of man. J Clin Endocrinol Metab. 1975;40:345.

    Article  CAS  PubMed  Google Scholar 

  46. Harrison RG. The distribution of the vasal and cremasteric arteries to the testis and their functional importance. J Anat. 1949b;83:267.

    PubMed  PubMed Central  Google Scholar 

  47. Agger P. Scrotal and testicular temperature: its relation to sperm count before and after operation for varicocele. Fertil Steril. 1971;22:286–97.

    Article  CAS  PubMed  Google Scholar 

  48. Kurz KR, Goldstein M. Scrotal temperature reflects intratesticular temperature and is lowered by shaving. J Urol. 1986;135:290–2.

    Article  CAS  PubMed  Google Scholar 

  49. Goldstein M, Eid JF. Elevation of intratesticular and scrotal skin surface temperature in men with varicocele. J Urol. 1989;142:743–5.

    Article  CAS  PubMed  Google Scholar 

  50. Marshall FF, Edler JS. Cryptorchidism and related anomalies. New York: Praeger Publishers; 1982.

    Google Scholar 

  51. Mieusset R, Bujan L, Mondinat C, Mansat A, Pontonnier F, Grandjean H. Association of scrotal hyperthermia with impaired spermatogenesis in infertile men. Fertil Steril. 1987;48:1006–11.

    Article  CAS  PubMed  Google Scholar 

  52. Kormano M, Koskimies AI, Hunter RL. The presence of specific proteins, in the absence of many serum proteins, in the rat seminiferous tubule fluid. Experientia. 1971;27:1461–3.

    Article  CAS  PubMed  Google Scholar 

  53. Jarow JP, Ogle A, Kaspar J, Hopkins M. Testicular artery ramification within the inguinal canal. J Urol. 1992;147:1290–2.

    Article  CAS  PubMed  Google Scholar 

  54. Beck EM, Schlegel PN, Goldstein M. Intraoperative varicocele anatomy: a macroscopic and microscopic study. J Urol. 1992;148:1190–4.

    Article  CAS  PubMed  Google Scholar 

  55. Hopps CV, Lemer ML, Schlegel PN, Goldstein M. Intraoperative varicocele anatomy: a microscopic study of the inguinal versus subinguinal approach. J Urol. 2003a;170:2366–70.

    Article  PubMed  Google Scholar 

  56. Hopps CV, Mielnik A, Goldstein M, Palermo GD, Rosenwaks Z, Schlegel PN. Detection of sperm in men with Y chromosome microdeletions of the AZFa. AZFb and AZFc regions Hum Reprod. 2003b;18:1660–5.

    Article  CAS  PubMed  Google Scholar 

  57. Silber SJ. Microsurgical aspects of varicocele. Fertil Steril. 1979;31:230–2.

    Article  CAS  PubMed  Google Scholar 

  58. Davis CM, Papadopoulos V, Sommers CL, Kleinman HK, Dym M. Differential expression of extracellular matrix components in rat Sertoli cells. Biol Reprod. 1990;43:860–9.

    Article  CAS  PubMed  Google Scholar 

  59. Setchell BP, Pakarinen P, Huhtaniemi I. How much LH do the Leydig cells see? J Endocrinol. 2002;175:375–82.

    Article  CAS  PubMed  Google Scholar 

  60. Turner TT. On the epididymis and its role in the development of the fertile ejaculate. J Androl. 1995;16:292–8.

    CAS  PubMed  Google Scholar 

  61. Ergun S, Kilic N, Harneit S, Paust HJ, Ungefroren H, Mukhopadhyay A, Davidoff M, Holstein AF. Microcirculation and the vascular control of the testis. New York: Plenum Press; 1977.

    Google Scholar 

  62. Ishigami K, Koshida Y, Hirooka M, Mohri K. A new operation for varicocele: Use of microvascular anastomosis. Surgery. 1970;67:620–3.

    CAS  PubMed  Google Scholar 

  63. Hundeiker M. Lymphgefasse in parenchym des menschlichen hoden. Arch Klin Exp Derm. 1971;235:271.

    Article  Google Scholar 

  64. Wenzel J, Kellerman P. Vergleichende untersuchungen uber das lymphgefasssytem des nebenhodens und hodesn von mensch, hund unk kaninchen. Z Mikrosk Anat Forsch. 1966;75:368.

    Google Scholar 

  65. Goldstein M. New insights into the etiology and treatment of male infertility.[comment]. J Urol. 1997;158:1808–9.

    Article  CAS  PubMed  Google Scholar 

  66. Kormano M, Suoranta H. An angiographic study of the arterial pattern of the human testis. Anat Anz. 1971;128:69–76.

    CAS  PubMed  Google Scholar 

  67. Levine N, Marsh DJ. Micropuncture studies of the electrochemical aspects of fluid and electrolyte transport in individual seminiferous tubules, the epididymis and the vas deferens in rats. J Physiol. 1971;213:557–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tuck RR, Setchell BP, Waites GMH, Young JA. The composition of fluid collected by micropuncture and catheterization from the seminiferous tubules and rete testes of rats. Eur J Physiol. 1970;318:225–43.

    Article  CAS  Google Scholar 

  69. Lee KH, Hess RA, Bahr JM, Lubahn DB, Taylor J, Bunick D. Estrogen receptor alpha has a functional role in the mouse rete testis and efferent ductules. Biol Reprod. 2000;63:1873–80.

    Article  CAS  PubMed  Google Scholar 

  70. Koskimies AI, Kormano M, Alfthau O. Proteins of the seminiferous tubule fluid in man--evidence for a blood-testis barrier. J Reprod Fertil. 1973;32:79–86.

    Article  CAS  PubMed  Google Scholar 

  71. Hutson JM, Baker M, Terada M, Zhou B, Paxton G. Hormonal control of testicular descent and the cause of cryptorchidism. Reprod Fertil Dev. 1994;6:151–6.

    Article  CAS  PubMed  Google Scholar 

  72. Nes WD, Lukyanenko YO, Jia ZH, Quideau S, Howald WN, Pratum TK, West RR, Hutson JC. Identification of the lipophilic factor produced by macrophages that stimulates steroidogenesis. Endocrinology. 2000;141:953–8.

    Article  CAS  PubMed  Google Scholar 

  73. Hales DB, Diemer T, Hales KH. Role of cytokines in testicular function. Endocrine. 1999;10:201–17.

    Article  CAS  PubMed  Google Scholar 

  74. Kaler LW, Neaves WB. Attrition of human Leydig cell population with advancing age. Anat Rec. 1978;192:513–21.

    Article  CAS  PubMed  Google Scholar 

  75. Christensen AK. Leydig cells. In: Hamilton W, Greep RO, editors. Handbook of physiology. Washington, DC: American Physiology Society; 1975. p. 57–94.

    Google Scholar 

  76. Huhtaniemi I, Pelliniemi LJ. Fetal Leydig cells: cellular origin, morphology, life span, and special functional features. Proc Soc Exp Biol Med. 1992;201:125–40.

    Article  CAS  PubMed  Google Scholar 

  77. Keeney DS, Sprando RL, Robaire B, Zirkin BR, Ewing LL. Reversal of long-term LH deprivation on testosterone secretion and Leydig cell volume, number and proliferation in adult rats. J Endocrinol. 1990;127:47–58.

    Article  CAS  PubMed  Google Scholar 

  78. Teerds KJ, Dorrington JH. Localization of transforming growth factor beta 1 and beta 2 during testicular development in the rat. Biol Reprod. 1993;48:40–5.

    Article  CAS  PubMed  Google Scholar 

  79. O’Shaughnessy PJ, Baker P, Sohnius U, Haavisto AM, Charlton HM, Huhtaniemi I. Fetal development of Leydig cell activity in the mouse is independent of pituitary gonadotroph function. Endocrinology. 1998;139:1141–6.

    Article  PubMed  Google Scholar 

  80. Teerds KJ, de Rooij DG, de Jong FH, van Haaster LH. Development of the adult-type Leydig cell population in the rat is affected by neonatal thyroid hormone levels. Biol Reprod. 1998;59:344–50.

    Article  CAS  PubMed  Google Scholar 

  81. Le Roy C, Lejeune H, Chuzel F, Saez JM, Langlois D. Autocrine regulation of Leydig cell differentiated functions by insulin-like growth factor I and transforming growth factor beta. J Steroid Biochem Mol Biol. 1999;69:379–84.

    Article  PubMed  Google Scholar 

  82. Lipsett MB. Steroid secretion by the testis in man. New York: Academic Press; 1974.

    Book  Google Scholar 

  83. Ewing LL, Brown B. Testicular steroidogenesis. New York: Academic Press; 1977.

    Book  Google Scholar 

  84. Anderson JM, Dietschy JM. Regulation of sterol synthesis in 15 tissues of rat. II. Role of rat and human high and low density plasma lipoproteins and of rat chylomicron remnants. J Biol Chem. 1977;252:3652–6.

    Google Scholar 

  85. Charreau EH, Calvo JC, Nozu K, Pignataro O, Catt KJ, Dufau ML. Hormonal modulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in gonadotropin-stimulated and -desensitized testicular Leydig cells. J Biol Chem. 1981;256:12719–24.

    CAS  PubMed  Google Scholar 

  86. Stocco DM. Intramitochondrial cholesterol transfer. Biochim Biophys Acta. 2000;1486:184–97.

    Article  CAS  PubMed  Google Scholar 

  87. Culty M, Li H, Boujrad N, Amri H, Vidic B, Bernassau JM, Reversat JL, Papadopoulos V. In vitro studies on the role of the peripheral-type benzodiazepine receptor in steroidogenesis. J Steroid Biochem Mol Biol. 1999;69:123–30.

    Article  CAS  PubMed  Google Scholar 

  88. West LA, Horvat RD, Roess DA, Barisas BG, Juengel JL, Niswender GD. Steroidogenic acute regulatory protein and peripheral-type benzodiazepine receptor associate at the mitochondrial membrane. Endocrinology. 2001;142:502–5.

    Article  CAS  PubMed  Google Scholar 

  89. Payne AH, Hales DB. Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocr Rev. 2004;25:947–70.

    Article  CAS  PubMed  Google Scholar 

  90. Miller WL. Disorders of androgen biosynthesis. Semin Reprod Med. 2002;20:205–16.

    Article  CAS  PubMed  Google Scholar 

  91. Catt KJ, Dufau ML. Basic concepts of the mechanism of action of peptide hormones. Biol Reprod. 1976;14:1.

    Article  CAS  PubMed  Google Scholar 

  92. Dufau ML, Catt KJ. Gonadotrophin receptors and regulation of steroidogenesis in the testis and ovary. Vitam Horm. 1978;36:461.

    Article  CAS  PubMed  Google Scholar 

  93. Eik-Nes KB. Biosynthesis and secretion of testicular steroids. In: Greep RO, Astwood EB, editors. Handbook of physiology. Baltimore: The Williams & Wilkins Co.; 1975a. p. 95.

    Google Scholar 

  94. Eik-Nes KB. Production and secretion of 5alpha-reduced testosterone (DHT) by male reproductive organs. J Steroid Biochem. 1975b;6:337–9.

    Article  CAS  PubMed  Google Scholar 

  95. Ewing LL. Leydig cell. New York: Churchill Livingstone; 1983.

    Google Scholar 

  96. Hall PF. Testicular hormones: synthesis and control. New York: Grune & Stratton; 1979.

    Google Scholar 

  97. Payne AH, Youngblood GL. Regulation of expression of steroidogenic enzymes in Leydig cells. Biol Reprod. 1995;52:217–25.

    Article  CAS  PubMed  Google Scholar 

  98. Rommerts FF, Cooke BA, van der Molen HJ. The role of cyclic AMP in the regulation of steroid biosynthesis in testis tissue. J Steroid Biochem. 1974;5:279–85.

    Article  CAS  PubMed  Google Scholar 

  99. Cooke BA. Transduction of the luteinizing hormone signal within the Leydig cell. In: Payne AH, Hardy MP, Russell LD, editors. The Leydig cell. Vienna, IL: Cache River Press; 1996. p. 351–64.

    Google Scholar 

  100. Wang WJ, Yeh YA, Stout P, Fan K. Inverse relationship between Leydig cell density and metastatic potential of prostatic adenocarcinoma. Anal Cell Pathol. 1999;19:169–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sharpe RM. Intratesticular factors controlling testicular function. Biol Reprod. 1984;30:29–49.

    Article  CAS  PubMed  Google Scholar 

  102. Bardin CW, Morris PL, Shaha C, Feng ZM, Rossi V, Vaughan J, Vale WW, Voglmayr J, Chen CL. Inhibin structure and function in the testis. Ann N Y Acad Sci. 1989;564:10–23.

    Article  CAS  PubMed  Google Scholar 

  103. Ascoli M, Segaloff DL. Regulation of the differentiated functions of Leydig tumor cells by epidermal growth factor. Ann N Y Acad Sci. 1989;564:99–115.

    Article  CAS  PubMed  Google Scholar 

  104. Saez JM, Avallet O, Lejeune H, Chatelain PG. Cell-cell communication in the testis. Horm Res. 1991;36:104–15.

    Article  CAS  PubMed  Google Scholar 

  105. Hedger MP, de Kretser DM. Leydig cell function and its regulation. Results Probl Cell Differ. 2000;28:69–110.

    Article  CAS  PubMed  Google Scholar 

  106. Saez JM. Leydig cells: endocrine, paracrine, and autocrine regulation. Endocr Rev. 1994;15:574–626.

    Article  CAS  PubMed  Google Scholar 

  107. Skinner MK. Mesenchymal (stromal)-epithelial cell interactions in the testis and ovary which regulate gonadal function. Reprod Fertil Dev. 1990;2:237–43.

    Article  CAS  PubMed  Google Scholar 

  108. Darney KJ Jr, Zirkin BR, Ewing LL. Testosterone autoregulation of its biosynthesis in the rat testis: inhibition of 17 alpha-hydroxylase activity. J Androl. 1996;17:137–42.

    CAS  PubMed  Google Scholar 

  109. Ewing LL, Davis JC, Zirkin BR. Regulation of testicular function. A spatial and temporal view. Baltimore: University Park Press; 1980.

    Google Scholar 

  110. DiZerga GS, Sherins RJ. Endocrine control of adult testicular function. New York: Raven Press; 1981a.

    Google Scholar 

  111. Faiman C, JSD W, Reyes FI. Endocrinology of the fetal testis. New York: Raven Press; 1981.

    Google Scholar 

  112. Swerdloff RS, Heber D. Endocrine control of testicular function from birth to puberty. New York: Raven Press; 1981.

    Google Scholar 

  113. Santen RJ. Feedback control of luteinizing hormone and follicle-stimulating hormone secretion by testosterone and estradiol in men: physiological and clinical implications. Clin Biochem. 1981;14:243–51.

    Article  CAS  PubMed  Google Scholar 

  114. Hermo L, Lalli M, Clermont Y. Arrangement of connective tissue elements in the walls of seminiferous tubules of man and monkey. Am J Anat. 1977;148:433–46.

    Article  CAS  PubMed  Google Scholar 

  115. Toyama Y. Actin-like filaments in the myoid cell of the testis. Cell Tissue Res. 1977;177:221–6.

    Article  CAS  PubMed  Google Scholar 

  116. Suvanto O, Kormano M. Effect of experimental cryptorchidism and cadmium injury on the spontaneous contractions of the seminiferous tubules of the rat testis. Virchows Arch B Cell Pathol. 1970;4:217–24.

    CAS  PubMed  Google Scholar 

  117. Tung PS, Skinner MK, Fritz IB. Fibronectin synthesis is a marker for peritubular cell contaminants in Sertoli cell-enriched cultures. Biol Reprod. 1984;30:199–211.

    Article  CAS  PubMed  Google Scholar 

  118. Skinner MK, Fetterolf PM, Anthony CT. Purification of a paracrine factor, P-Mod-S, produced by testicular peritubular cells that modulates Sertoli cell function. J Biol Chem. 1988;263:2884–90.

    CAS  PubMed  Google Scholar 

  119. Cigorraga SB, Chemes H, Pellizzari E. Steroidogenic and morphogenic characteristics of human peritubular cells in culture. Biol Reprod. 1994;51(6):1193–205.

    Article  CAS  PubMed  Google Scholar 

  120. Hadley MA, Byers SW, Suarez-Quian CA, Kleinman HK, Dym M. Extracellular matrix regulates Sertoli cell differentiation, testicular cord formation and germ cell development in vitro. J Cell Biol. 1985;101:1511–22.

    Article  CAS  PubMed  Google Scholar 

  121. Richardson L. Personal communication. 1990.

    Google Scholar 

  122. Bardin CW, Cheng CY, Mustow NA, Gunsalus GL. The sertoli cell. New York: Raven Press; 1988.

    Google Scholar 

  123. Kerr JB, deKretser DM. The cytology of the human testis. New York: Raven Press; 1981.

    Google Scholar 

  124. Nistal M, Abaurrea MA, Panaigua R. Morphological and histometric study on the human Sertoli cell from birth to the onset of puberty. J Anat. 1982;14:351.

    Google Scholar 

  125. Mruk DD, Cheng CY. Sertoli-Sertoli and Sertoli-germ cell interactions and their significance in germ cell movement in the seminiferous epithelium during spermatogenesis. Endocr Rev. 2004;25:747–806.

    Article  CAS  PubMed  Google Scholar 

  126. Hansson V, Djoseland O. Preliminary characterization of the 5a-dihydrotestosterone binding protein in the epididymal cytosol fraction.In vivo studies. Acta Endocrinol. 1972;71:614.

    Article  CAS  Google Scholar 

  127. Ritzen EM, Hansson V, French FS. The Sertoli cell. New York: Raven Press; 1981.

    Google Scholar 

  128. Chan SYW, Loh TT, Wang C. Seminal plasma transferrin and seminiferous tubular dysfunction. Fertil Steril. 1986;45:687.

    Article  CAS  PubMed  Google Scholar 

  129. Mather JP, Gunsalus GL, Musto NA, Cheng CY, Parvinen M, Wright W, Perez-Infante V, Margioris A, Liotta A, Becker R, Krieger DT, Bardin CW. The hormonal and cellular control of Sertoli cell secretion. J Steroid Biochem. 1983;19:41–51.

    Article  CAS  PubMed  Google Scholar 

  130. Griswold MD, Morales C, Sylvester SR. Molecular biology of the sertoli cell. Oxf Rev Reprod Biol. 1988;10:53–123.

    Google Scholar 

  131. Maddocks S, Setchell BP. The physiology of the endocrine testis. Oxf Rev Reprod Biol. 1988;10:53–123.

    CAS  PubMed  Google Scholar 

  132. Means AR, Dedman JR, Tash HS, Tindall DJ, VanSickel M, Welsh MJ. Regulation of the testis Sertoli cell by follicle stimulating hormone. Annu Rev Physiol. 1980;42:59.

    Article  CAS  PubMed  Google Scholar 

  133. Ritzen EM. Chemical messengers between sertoli cells and neighbouring cells. J Steroid Biochem. 1983;19:499–504.

    Article  CAS  PubMed  Google Scholar 

  134. Lubahn DB, Moyer JS, Golding TS, Couse JF, Korach KS, Smithies O. Alteration of reproductive function but not prenatal sexual development after insertional disruption of the mouse estrogen receptor gene. Proc Natl Acad Sci U S A. 1993;90:11162–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Skinner MK, Fritz IB. Androgen stimulation of Sertoli cell function is enhanced by peritubular cells. Mol Cell Endocrinol. 1985;40:115–22.

    Article  CAS  PubMed  Google Scholar 

  136. Fawcett DW. The cell biology of gametogenesis in the male. Perspect Biol Med. 1979;22:S56–73.

    Article  PubMed  Google Scholar 

  137. Flickinger CJ. The postnatal development of the Sertoli cells of the mouse. Z Zellforsch Mikrosk Anat. 1967;78:92–113.

    Article  CAS  PubMed  Google Scholar 

  138. Russell LD. Sertoli-germ cell interactions: a review. Gamete Res. 1980;3:179.

    Article  Google Scholar 

  139. Kormano M. Dye permeability and alkaline phosphatase activity of testicular capillaries in the postnatal rat. Histochemie. 1967;9:327–38.

    Article  CAS  PubMed  Google Scholar 

  140. Vitale R. The development of the blood-testis barrier in Sertoli-cell-only rats. Anat Rec. 1975;501:181.

    Google Scholar 

  141. deKretser DW, Burger HG. Ultrastructural studies of the human Sertoli cell in normal men and males with hypogonadotropic hypogonadism before and after gonadotropic treatment. New York: Wiley Interscience; 1972.

    Google Scholar 

  142. Skinner MK. Interactions beween germ cells and Sertoli cells in the testis. Biol Reprod. 1995;52:211–6.

    Article  Google Scholar 

  143. Connell CJ. The Sertoli cell of the sexually mature dog. Anat Rec. 1974;178:333.

    Google Scholar 

  144. Fawcett DW. Interactions between Sertoli cells and germ cells. New York: Academic Press; 1974.

    Google Scholar 

  145. Kaya M, Harrison RG. The ultrastructural relationship between Sertoli cells and spermatogenic cells in the rat. J Anat. 1976;121:279.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Romrell LJ, Ross MH. Characterization of sertoli cell-germ junctional specializations in disassociated testicular cells. Anat Rec. 1979;193:23.

    Article  CAS  PubMed  Google Scholar 

  147. Russell L. Movement of spermatocytes from the basal to the adluminal compartment of the rat testis. Am J Anat. 1977;148:313–28.

    Article  CAS  PubMed  Google Scholar 

  148. Russell L, Clermont Y. Anchoring device between Sertoli cells and late spermatids in rat seminiferous tubules. Anat Rec. 1976;185:259–78.

    Article  CAS  PubMed  Google Scholar 

  149. Parvinen M, Vihko KK, Toppari J. Cell interactions during the seminiferous epithelial cycle. Int Rev Cytol. 1986;104:115–51.

    Article  CAS  PubMed  Google Scholar 

  150. Russell LD, Malone JP. A study of Sertoli-spermatid tubulobulbar complexes in selected mammals. Tissue Cell. 1980;12:263–85.

    Article  CAS  PubMed  Google Scholar 

  151. Amann RP, Howards SS. Daily spermatozoal production and epididymal spermatozoal reserves of the human male. J Urol. 1980;124:211–5.

    Article  CAS  PubMed  Google Scholar 

  152. Clermont Y. Kinetics of spermatogenesis in mammals: Seminiferous epithelium cycle and spermatogonial renewal. Physiol Rev. 1972;52:198.

    Article  CAS  PubMed  Google Scholar 

  153. Steinberger E. Molecular mechanisms concerned with hormonal effects on the seminiferous tubule and endocrine relationships at puberty in the male. In: Spilman CH, et al., editor. Regulatory mechanisms of male reproductive physiology. Amsterdam: Excerpta Medica; 1976. p. 29–34.

    Google Scholar 

  154. Gondos B, Hobel CJ. Ultrastructure of germ cell development in the human fetal testis. Z Zellforsch Mikrosk Anat. 1971;119:1–20.

    Article  CAS  PubMed  Google Scholar 

  155. Hilscher B, Engemann A. Histological and morphometric studies on the kinetics of germ cells and immature Sertoli cells during human prespermatogenesis. Andrologia. 1992;24:7–10.

    Article  CAS  PubMed  Google Scholar 

  156. Muller J, Skakkebaek NE. Quantification of germ cells and seminiferous tubules by stereological examination of testicles from 50 boys who suffered from sudden death. Int J Androl. 1983;6:143–56.

    Article  CAS  PubMed  Google Scholar 

  157. Dym M. Spermatogonial stem cells of the testis. Proc Natl Acad Sci U S A. 1994;91:11287–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Yoshinaga K, Nishikawa S, Ogawa M, Hayashi SI, Kunisada T, Fujimoto T, Nishikawa SI. Role of c-kit in mouse spermatogenesis: identification of spermatogonia as a specific site of c-kit expression and function. Development. 1991;113:689–99.

    CAS  PubMed  Google Scholar 

  159. Allan DJ, Harmon BV, Roberts SA. Spermatogonial apoptosis has three morphologically recognizable phases and shows no circadian rhythm during normal spermatogenesis in the rat. Cell Prolif. 1992;25:241–50.

    Article  CAS  PubMed  Google Scholar 

  160. Print CG, Loveland KL. Germ cell suicide: new insights into apoptosis during spermatogenesis. Bioessays. 2000;22:423–30.

    Article  CAS  PubMed  Google Scholar 

  161. Heller CG, Clermont Y. Kinetics of the germinal epithelium in man. Recent Prog Horm Res. 1964;20:545.

    CAS  PubMed  Google Scholar 

  162. Leidl W, Waschke B. Comparative aspects of the kinetics of the spermiogenesis. Berlin: Grosse; 1970.

    Google Scholar 

  163. Roosen-Runge EC, Barlow FD. Quantitative studies in human spermatogenesis. I. Spermatogonia. Am J Anat. 1953;93:143.

    Article  CAS  PubMed  Google Scholar 

  164. Jarow JP, Wright WW, Brown TR, Yan X, Zirkin BR. Bioactivity of androgens within the testes and serum of normal men. J Androl. 2005;26:343–8.

    Article  CAS  PubMed  Google Scholar 

  165. Sealey JE, Goldstein M, Pitarresi T, Kudlak TT, Glorioso N, Fiamengo SA, Laragh JH. Prorenin secretion from human testis: no evidence for secretion of active renin or angiotensinogen. J Clin Endocrinol Metab. 1988;66:974–8.

    Article  CAS  PubMed  Google Scholar 

  166. Steinberger E. Hormonal control of mammalian spermatogenesis. Physiol Rev. 1971;51:1.

    Article  CAS  PubMed  Google Scholar 

  167. Mancini RE. Effect of gonadotropin preparations and of urinary FSH and LH on human spermatogenesis. In: Segal SJ, et al., editors. The regulation of mammalian reproduction. Thomas: Springfield; 1973. p. 151–62.

    Google Scholar 

  168. Mancini RE, Perez Loret A, Guitelman A, Ghirlanda J. Effect of testosterone in the recovery of spermatogenesis in hypophysectomized patients. Gynecol Invest. 1971;2(1):98–115.

    Article  CAS  PubMed  Google Scholar 

  169. Mancini RE, Seigner AC, Perez Loret A. Effect of gonadotropins on the recovery of spermatogenesis in hypophysectomized patients. J Clin Endocrinol. 1969;29:467.

    Article  CAS  Google Scholar 

  170. Lyon MF, Glenister PH, Lamoreux ML. Normal spermatozoa from androgen-resistant germ cells of chimeric mice and the role of androgen in spermatogenesis. Nature. 1975;258:620.

    Article  CAS  PubMed  Google Scholar 

  171. Steinberger E, Root A, Fischer M, Smith KO. The role of androgens in the initiation of spermatogenesis is man. J Clin Endocrinol Metabol. 1973;37:746.

    Article  CAS  Google Scholar 

  172. Simoni M, Weinbauer GF, Gromoll J, Nieschlag E. Role of FSH in male gonadal function. Ann Endocrinol (Paris). 1999;60:102–6.

    CAS  Google Scholar 

  173. Chandley AC, Cooke HJ. Human male fertility--Y-linked genes and spermatogenesis. Hum Mol Genet. 1994;3:1449–52.

    Article  CAS  PubMed  Google Scholar 

  174. Girardi SK, Mielnik A, Schlegel PN. Submicroscopic deletions in the Y chromosome of infertile men. Hum Reprod. 1997;12:1635–41.

    Article  CAS  PubMed  Google Scholar 

  175. Reijo R, Lee T-Y, Salo P, Alagappan R, Brown LG, Rosenberg M, Rozen S, Jaffe T, Straus D, Hovatta O, DelaChapelle A, Silber S, Page DC. Diverse spermatogenic defects in humans caused by Y chromosome deletions encompassing a novel RNA-binding protein gene. Nat Genet. 1995;10:383–93.

    Article  CAS  PubMed  Google Scholar 

  176. Foresta C, Moro E, Rossi A, Rossato M, Garolla A, Ferlin A. Role of the AZFa candidate genes in male infertility. J Endocrinol Invest. 2000;23:646–51.

    Article  CAS  PubMed  Google Scholar 

  177. Fakhro KA, Elbardisi H, Arafa M, Robay A, Rodriguez-Flores JL, Al-Shakaki A, Syed N, Mezey JG, Abi Khalil C, Malek JA, Al-Ansari A, Al Said S, Crystal RG. Point-of-care whole-exome sequencing of idiopathic male infertility. Genet Med. 2018;20:1365–73.

    Article  CAS  PubMed  Google Scholar 

  178. Schatten G. The centrosome and its mode of inheritance—the reduction of the centrosome during gametogenesis and its restoration during fertilization. Dev Biol. 1994;165:299–335.

    Article  CAS  PubMed  Google Scholar 

  179. Simerly C, Wu G-J, Zoran S, Ord T, Rawlins R, Jones J, Navara C, Gerrity M, Rinehart J, Binor Z, Asch R, Schatten G. The paternal inheritance of the centrosome, the cell’s microtubule-organizing center, in humans, and the implications for infertility. Nat Med. 1995;1:47–51.

    Article  PubMed  Google Scholar 

  180. Palermo G, Munne S, Cohen J. The human zygote inherits its mitotic potential from the male gamete. Hum Reprod. 1994;9:1220–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter N. Schlegel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schlegel, P.N., Katzovitz, M.A. (2020). Male Reproductive Physiology. In: Chapple, C., Steers, W., Evans, C. (eds) Urologic Principles and Practice. Springer Specialist Surgery Series. Springer, Cham. https://doi.org/10.1007/978-3-030-28599-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28599-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28598-2

  • Online ISBN: 978-3-030-28599-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics