Skip to main content

Comparative Analysis of Gene Expression Patterns for Oral Epithelium-Related Functions with Aging

  • Conference paper
Oral Mucosal Immunity and Microbiome

Abstract

Epithelial cells and functions of the epithelium are critical to the health of the oral cavity. We used a nonhuman primate model to profile the transcriptome of gingival tissues in health across the lifespan and hypothesized that in older animals, epithelial-related transcriptome patterns would reflect epithelial cells that are aggressively responsive to the surrounding environment and less able to modulate and resolve the noxious challenge from the bacteria. Rhesus monkeys (n = 34) with a healthy periodontium were distributed into four groups: ≤3 years (young), 3–7 years (adolescent), 12–16 years (adult), and 18–23 years (aged), and a buccal gingival sample from the premolar/molar region of each animal was obtained. RNA was subjected to a microarray analysis (GeneChip® Rhesus Macaque Genome Array, Affymetrix), and 336 genes examined that are linked to epithelium and epithelial cell functions categorized into 9 broad functional groups: extracellular matrix and cell structure; extracellular matrix remodeling enzymes; cell adhesion molecules, cytoskeleton regulation; inflammatory response; growth factors; kinases/cell signaling; cell surface receptors; junction associated molecules; autophagy/apoptosis; antimicrobial peptides; and transcription factors. Total of 255 genes displayed a normalized signal >100, and differences across the age groups were observed primarily in extracellular matrix and cell structure, cell adhesion molecules, and cell surface receptor gene categories with elevations in the aged tissues. Keratins 2, 5, 6B, 13, 16, 17 were all significantly increased in healthy-aged tissues versus adults, and keratins 1 and 2 were significantly decreased in young animals. Approximately 15 integrins are highly expressed in the gingival tissues across the age groups with only ITGA8, ITGAM (CD11b), and ITGB2 significantly increased in the aged tissues. Little impact of aging on desmosomal/hemidesmosomal genes was noted. These results suggest that healthy gingival aging has a relatively limited impact on the broader functions of the epithelium and epithelial cells, with some effects on genes for extracellular matrix and cell adhesion molecules (e.g., integrins). Thus, while there is a substantial impact of aging on immune system targets even in healthy gingiva, it appears that the epithelial barrier remains reasonably molecularly intact in this model system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbayya, K., Puthanakar, N. Y., Naduwinmani, S., & Chidambar, Y. S. (2015). Association between periodontitis and Alzheimer’s disease. North American Journal of Medical Sciences, 7, 241–246.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahluwalia, B., Magnusson, M. K., & Ohman, L. (2017). Mucosal immune system of the gastrointestinal tract: Maintaining balance between the good and the bad. Scandinavian Journal of Gastroenterology, 52, 1185–1193.

    Article  CAS  PubMed  Google Scholar 

  • Albandar, J. M., & Tinoco, E. M. (2002). Global epidemiology of periodontal diseases in children and young persons. Periodontology 2000, 29, 153–176.

    Article  PubMed  Google Scholar 

  • Barak, S., Oettinger-Barak, O., Oettinger, M., Machtei, E. E., Peled, M., & Ohel, G. (2003). Common oral manifestations during pregnancy: A review. Obstetrical & Gynecological Survey, 58, 624–628.

    Article  Google Scholar 

  • Belibasakis, G. N. (2018). Microbiological changes of the ageing oral cavity. Archives of Oral Biology, 96, 230–232.

    Article  PubMed  Google Scholar 

  • Belibasakis, G. N., Kast, J. I., Thurnheer, T., Akdis, C. A., & Bostanci, N. (2015). The expression of gingival epithelial junctions in response to subgingival biofilms. Virulence, 6, 704–709.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bimstein, E., & Ebersole, J. L. (1989). The age-dependent reaction of the periodontal tissues to dental plaque. ASDC Journal of Dentistry for Children, 56, 358–362.

    CAS  PubMed  Google Scholar 

  • Bimstein, E., Ram, D., Irshied, J., Naor, R., & Sela, M. N. (2002). Periodontal diseases, caries, and microbial composition of the subgingival plaque in children: A longitudinal study. ASDC Journal of Dentistry for Children, 69, 133–137. 123.

    PubMed  Google Scholar 

  • Bimstein, E., Huja, P. E., & Ebersole, J. L. (2013). The potential lifespan impact of gingivitis and periodontitis in children. The Journal of Clinical Pediatric Dentistry, 38, 95–99.

    Article  PubMed  Google Scholar 

  • Bosshardt, D. D., & Lang, N. P. (2005). The junctional epithelium: From health to disease. Journal of Dental Research, 84, 9–20.

    Article  CAS  PubMed  Google Scholar 

  • Brown, A. J., et al. (2017). “Chemokine CXCL7 Heterodimers: Structural Insights, CXCR2 Receptor Function, and Glycosaminoglycan Interactions.” Int J Mol Sci 18(4).

    Article  PubMed Central  CAS  Google Scholar 

  • Cardoso, E. M., Reis, C., & Manzanares-Cespedes, M. C. (2018). Chronic periodontitis, inflammatory cytokines, and interrelationship with other chronic diseases. Postgraduate Medicine, 130, 98–104.

    Article  PubMed  Google Scholar 

  • Chapple, I. L., Van der Weijden, F., Dorfer, C., et al. (2015). Primary prevention of periodontitis: Managing gingivitis. Journal of Clinical Periodontology, 42, S71.

    Article  PubMed  Google Scholar 

  • Dale, B. A. (2002). Periodontal epithelium: A newly recognized role in health and disease. Periodontology 2000, 30, 70–78.

    Article  PubMed  Google Scholar 

  • De Lorenzo, G., Ferrari, S., Cervone, F., & Okun, E. (2018). Extracellular DAMPs in plants and mammals: Immunity, tissue damage and repair. Trends in Immunology, 39, 937–950.

    Article  PubMed  CAS  Google Scholar 

  • Desurmont, T., Skrypek, N., Duhamel, A., et al. (2015). Overexpression of chemokine receptor CXCR2 and ligand CXCL7 in liver metastases from colon cancer is correlated to shorter disease-free and overall survival. Cancer Science, 106, 262–269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doles, J., Storer, M., Cozzuto, L., Roma, G., & Keyes, W. M. (2012). Age-associated inflammation inhibits epidermal stem cell function. Genes & Development, 26, 2144–2153.

    Article  CAS  Google Scholar 

  • Ebersole, J. L., Steffen, M. J., Gonzalez-Martinez, J., & Novak, M. J. (2008). Effects of age and oral disease on systemic inflammatory and immune parameters in nonhuman primates. Clinical and Vaccine Immunology, 15, 1067–1075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebersole, J. L., Kirakodu, S., Novak, M. J., et al. (2014). Cytokine gene expression profiles during initiation, progression and resolution of periodontitis. Journal of Clinical Periodontology, 41, 853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebersole, J. L., Kirakodu, S. S., Novak, M. J., et al. (2016a). Transcriptome analysis of B cell immune functions in periodontitis: Mucosal tissue responses to the oral microbiome in aging. Frontiers in Immunology, 7, 272.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ebersole, J. L., Kirakodu, S., Novak, M. J., et al. (2016b). Effects of aging in the expression of NOD-like receptors and inflammasome-related genes in oral mucosa. Molecular Oral Microbiology, 31, 18–32.

    Article  CAS  PubMed  Google Scholar 

  • Ebersole, J. L., Dawson, D., 3rd, Emecen-Huja, P., et al. (2017). The periodontal war: Microbes and immunity. Periodontology 2000, 75, 52–115.

    Article  PubMed  Google Scholar 

  • Ebersole, J. L., Novak, M. J., Orraca, L., et al. (2018). Hypoxia-inducible transcription factors, HIF1A and HIF2A, increase in aging mucosal tissues. Immunology, 154, 452–464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez, O. A., Stromberg, A. J., Huggins, P. M., Gonzalez-Martinez, J., Novak, M. J., & Ebersole, J. L. (2011). Apoptotic genes are differentially expressed in aged gingival tissue. Journal of Dental Research, 90, 880–886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez, O. A., John Novak, M., Kirakodu, S., et al. (2013). Effects of aging on apoptosis gene expression in oral mucosal tissues. Apoptosis, 18, 249–259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez, O. A., Novak, M. J., Kirakodu, S., et al. (2014). Comparative analysis of gingival tissue antigen presentation pathways in ageing and periodontitis. Journal of Clinical Periodontology, 41, 327–339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez, O. A., Novak, M. J., Kirakodu, S., et al. (2015). Differential gene expression profiles reflecting macrophage polarization in aging and periodontitis gingival tissues. Immunological Investigations, 44, 643–664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez, O. A., Kirakodu, S., Novak, M. J., et al. (2018). Comparative analysis of microbial sensing molecules in mucosal tissues with aging. Immunobiology, 223, 279–287.

    Article  CAS  PubMed  Google Scholar 

  • Gumus, P., Ozturk, V. O., Bozkurt, E., & Emingil, G. (2016). Evaluation of the gingival inflammation in pregnancy and postpartum via 25-hydroxy-vitamin D3, prostaglandin E2 and TNF-alpha levels in saliva. Archives of Oral Biology, 63(1–6), 1.

    Article  CAS  PubMed  Google Scholar 

  • Guncu, G. N., Yilmaz, D., Kononen, E., & Gursoy, U. K. (2015). Salivary antimicrobial peptides in early detection of periodontitis. Frontiers in Cellular and Infection Microbiology, 5, 99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gursoy, M., Zeidan-Chulia, F., Kononen, E., et al. (2014). Pregnancy-induced gingivitis and OMICS in dentistry: In silico modeling and in vivo prospective validation of estradiol-modulated inflammatory biomarkers. Omics: A Journal of Integrative Biology, 18, 582–590.

    Article  PubMed  CAS  Google Scholar 

  • Hajishengallis, G. (2014). Aging and its impact on innate immunity and inflammation: Implications for periodontitis. Journal of Oral Biosciences/JAOB, Japanese Association for Oral Biology, 56, 30–37.

    CAS  PubMed Central  Google Scholar 

  • Hajishengallis, G., & Lamont, R. J. (2016). Dancing with the stars: How choreographed bacterial interactions dictate nososymbiocity and give rise to keystone pathogens, accessory pathogens, and pathobionts. Trends in Microbiology, 24, 477–489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatakeyama, S., Yaegashi, T., Oikawa, Y., et al. (2006). Expression pattern of adhesion molecules in junctional epithelium differs from that in other gingival epithelia. Journal of Periodontal Research, 41, 322–328.

    Article  CAS  PubMed  Google Scholar 

  • Ho, S., Pothoulakis, C., & Koon, H. W. (2013). Antimicrobial peptides and colitis. Current Pharmaceutical Design, 19, 40–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huttner, E. A., Machado, D. C., de Oliveira, R. B., Antunes, A. G., & Hebling, E. (2009). Effects of human aging on periodontal tissues. Special Care in Dentistry, 29, 149–155.

    Article  PubMed  Google Scholar 

  • Icer, M. A., & Gezmen-Karadag, M. (2018). The multiple functions and mechanisms of osteopontin. Clinical Biochemistry, 59, 17–24.

    Article  CAS  PubMed  Google Scholar 

  • Jang, D. H., Bhawal, U. K., Min, H. K., Kang, H. K., Abiko, Y., & Min, B. M. (2015). A transcriptional roadmap to the senescence and differentiation of human oral keratinocytes. Journals of Gerontology, Series A: Biological Sciences and Medical Sciences, 70, 20–32.

    Article  CAS  Google Scholar 

  • Jenkins, W. M., & Papapanou, P. N. (2001). Epidemiology of periodontal disease in children and adolescents. Periodontology 2000, 26, 16–32.

    Article  CAS  PubMed  Google Scholar 

  • Jin, G., & Weinberg, A. (2018). Human antimicrobial peptides and cancer. Seminars in Cell & Developmental Biology, 88, 156–162.

    Article  CAS  Google Scholar 

  • Kinane, D. F., & Hodge, P. J. (2001). Periodontal disease in children and adolescents: Introduction and classification. Periodontology 2000, 26, 7–15.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, P. S. (2013). Oral microbiota and systemic disease. Anaerobe, 24, 90–93.

    Article  PubMed  Google Scholar 

  • Lamont, R. J., & Hajishengallis, G. (2015). Polymicrobial synergy and dysbiosis in inflammatory disease. Trends in Molecular Medicine, 21, 172–183.

    Article  CAS  PubMed  Google Scholar 

  • Lamster, I. B., Asadourian, L., Del Carmen, T., & Friedman, P. K. (2016). The aging mouth: Differentiating normal aging from disease. Periodontology 2000, 72, 96–107.

    Article  PubMed  Google Scholar 

  • Lang, N. P., Schatzle, M. A., & Loe, H. (2009). Gingivitis as a risk factor in periodontal disease. Journal of Clinical Periodontology, 36(Suppl 10), 3–8.

    Article  PubMed  Google Scholar 

  • Loe, H., Anerud, A., Boysen, H., & Morrison, E. (1986). Natural history of periodontal disease in man. Rapid, moderate and no loss of attachment in Sri Lankan laborers 14 to 46 years of age. Journal of Clinical Periodontology, 13, 431–445.

    Article  CAS  PubMed  Google Scholar 

  • Maddi, A., & Scannapieco, F. A. (2013). Oral biofilms, oral and periodontal infections, and systemic disease. American Journal of Dentistry, 26, 249–254.

    PubMed  Google Scholar 

  • McCormick, T. S., & Weinberg, A. (2010). Epithelial cell-derived antimicrobial peptides are multifunctional agents that bridge innate and adaptive immunity. Periodontology 2000, 54, 195–206.

    Article  PubMed  Google Scholar 

  • Meka, A., Bakthavatchalu, V., Sathishkumar, S., et al. (2010). Porphyromonas gingivalis infection-induced tissue and bone transcriptional profiles. Molecular Oral Microbiology, 25, 61–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Modeer, T., & Wondimu, B. (2000). Periodontal diseases in children and adolescents. Dental Clinics of North America, 44, 633–658.

    CAS  PubMed  Google Scholar 

  • Moorefield, E. C., Andres, S. F., Blue, R. E., et al. (2017). Aging effects on intestinal homeostasis associated with expansion and dysfunction of intestinal epithelial stem cells. Aging, 9, 1898–1915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nassar, M., Tabib, Y., Capucha, T., et al. (2017). GAS6 is a key homeostatic immunological regulator of host-commensal interactions in the oral mucosa. Proceedings of the National Academy of Sciences of the United States of America, 114, E337–E346.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Olive, C. (2012). Pattern recognition receptors: Sentinels in innate immunity and targets of new vaccine adjuvants. Expert Review of Vaccines, 11, 237–256.

    Article  CAS  PubMed  Google Scholar 

  • Papapanou, P. N., & Susin, C. (2017). Periodontitis epidemiology: Is periodontitis under-recognized, over-diagnosed, or both? Periodontology 2000, 75, 45–51.

    Article  PubMed  Google Scholar 

  • Pardo-Camacho, C., Gonzalez-Castro, A. M., Rodino-Janeiro, B. K., Pigrau, M., & Vicario, M. (2018). Epithelial immunity: Priming defensive responses in the intestinal mucosa. American Journal of Physiology. Gastrointestinal and Liver Physiology, 314, G247–G255.

    Article  PubMed  CAS  Google Scholar 

  • Parrish, A. R. (2017). The impact of aging on epithelial barriers. Tissue Barriers, 5, e1343172.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Partida-Rodriguez, O., Serrano-Vazquez, A., Nieves-Ramirez, M. E., et al. (2017). Human intestinal microbiota: Interaction between parasites and the host immune response. Archives of Medical Research, 48, 690–700.

    Article  PubMed  Google Scholar 

  • Patel, S. (2018). Danger-associated molecular patterns (DAMPs): The derivatives and triggers of inflammation. Current Allergy and Asthma Reports, 18, 63.

    Article  PubMed  CAS  Google Scholar 

  • Patsouras, M. D., Sikara, M. P., Grika, E. P., Moutsopoulos, H. M., Tzioufas, A. G., & Vlachoyiannopoulos, P. G. (2015). Elevated expression of platelet-derived chemokines in patients with antiphospholipid syndrome. Journal of Autoimmunity, 65, 30–37.

    Article  CAS  PubMed  Google Scholar 

  • Rajaee, A., Barnett, R., & Cheadle, W. G. (2018). Pathogen- and danger-associated molecular patterns and the cytokine response in sepsis. Surgical Infections, 19, 107–116.

    Article  PubMed  Google Scholar 

  • Sakai, T., Kiyoshima, T., Kobayashi, I., et al. (1999). Age-dependent changes in the distribution of BrdU- and TUNEL-positive cells in the murine gingival tissue. Journal of Periodontology, 70, 973–981.

    Article  CAS  PubMed  Google Scholar 

  • Schenkein, H. A., Berry, C. R., Burmeister, J. A., et al. (2003). Anti-cardiolipin antibodies in sera from patients with periodontitis. Journal of Dental Research, 82, 919–922.

    Article  CAS  PubMed  Google Scholar 

  • Shusterman, A., Munz, M., Richter, G., et al. (2017). The PF4/PPBP/CXCL5 gene cluster is associated with periodontitis. Journal of Dental Research, 96, 945–952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stocks, C. J., Schembri, M. A., Sweet, M. J., & Kapetanovic, R. (2018). For when bacterial infections persist: Toll-like receptor-inducible direct antimicrobial pathways in macrophages. Journal of Leukocyte Biology, 103, 35–51.

    Article  CAS  PubMed  Google Scholar 

  • Sukhithasri, V., Nisha, N., Biswas, L., Anil Kumar, V., & Biswas, R. (2013). Innate immune recognition of microbial cell wall components and microbial strategies to evade such recognitions. Microbiological Research, 168, 396–406.

    Article  CAS  PubMed  Google Scholar 

  • Tonetti, M. S., Chapple, I. L., Jepsen, S., & Sanz, M. (2015). Primary and secondary prevention of periodontal and peri-implant diseases introduction to, and objectives of the consensus from the 11 European workshop on periodontology. Journal of Clinical Periodontology, 42(Suppl 16), S1–S4.

    Article  PubMed  Google Scholar 

  • Tsukamoto, Y., Usui, M., Yamamoto, G., et al. (2012). Role of the junctional epithelium in periodontal innate defense and homeostasis. Journal of Periodontal Research, 47, 750–757.

    Article  CAS  PubMed  Google Scholar 

  • Van der Velden, U. (1984). Effect of age on the periodontium. Journal of Clinical Periodontology, 11, 281–294.

    Article  PubMed  Google Scholar 

  • Wade, W. G. (2013). The oral microbiome in health and disease. Pharmacological Research, 69, 137–143.

    Article  CAS  PubMed  Google Scholar 

  • Wael Youssef, E. (2018). Age-dependent differential expression of apoptotic markers in rat oral mucosa. Asian Pacific Journal of Cancer Prevention, 19, 3245–3250.

    Article  PubMed  Google Scholar 

  • Walsh, D., McCarthy, J., O’Driscoll, C., & Melgar, S. (2013). Pattern recognition receptors--molecular orchestrators of inflammation in inflammatory bowel disease. Cytokine & Growth Factor Reviews, 24, 91–104.

    Article  CAS  Google Scholar 

  • Wu, Y., Dong, G., Xiao, W., et al. (2016). Effect of aging on periodontal inflammation, microbial colonization, and disease susceptibility. Journal of Dental Research, 95, 460–466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia, Y., Sun, M., Xie, Y., & Shu, R. (2017). mTOR inhibition rejuvenates the aging gingival fibroblasts through alleviating oxidative stress. Oxidative Medicine and Cellular Longevity, 2017, 6292630.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yeo, L., Adlard, N., Biehl, M., et al. (2016). Expression of chemokines CXCL4 and CXCL7 by synovial macrophages defines an early stage of rheumatoid arthritis. Annals of the Rheumatic Diseases, 75, 763–771.

    Article  CAS  PubMed  Google Scholar 

  • Yu, L. C., Wang, J. T., Wei, S. C., & Ni, Y. H. (2012). Host-microbial interactions and regulation of intestinal epithelial barrier function: From physiology to pathology. World Journal of Gastrointestinal Pathophysiology, 3, 27–43.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, J., Wang, C. M., Zhang, P., et al. (2016). Expression of programmed death 1 ligand 1 on periodontal tissue cells as a possible protective feedback mechanism against periodontal tissue destruction. Molecular Medicine Reports, 13, 2423–2430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institute of Health grants P20GM103538 and UL1TR000117. We express our gratitude to the Caribbean Primate Research Center (CPRC) supported by grant P40RR03640, and the Microarray Core of University Kentucky for their invaluable technical assistance. We thank M. Kirakodu for data management support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Ebersole .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Cite this paper

Ebersole, J.L., Orraca, L., Novak, M.J., Kirakodu, S., Gonzalez-Martinez, J., Gonzalez, O.A. (2019). Comparative Analysis of Gene Expression Patterns for Oral Epithelium-Related Functions with Aging. In: Belibasakis, G.N., Hajishengallis, G., Bostanci, N., Curtis, M.A. (eds) Oral Mucosal Immunity and Microbiome. Advances in Experimental Medicine and Biology, vol 1197. Springer, Cham. https://doi.org/10.1007/978-3-030-28524-1_11

Download citation

Publish with us

Policies and ethics