Skip to main content

Mining Stock Market Time Series and Modeling Stock Price Crash Using a Pretopological Framework

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11683))

Included in the following conference series:

Abstract

We introduce a computational framework, namely a pretopological construct, for mining time series of stock prices in a financial market in order to expand a set of stocks by adding outside stocks whose average correlations with the inside are above a threshold. The threshold is considered as a function of the set’s size to verify the effect of group impact in a financial crisis. The efficiency of this approach is tested by a consecutive expansion process started from a single stock of Merrill Lynch & Co., which had a large influence in the United State market during the studying time. We found that the ability to imitate the real diffusion process can be classified into three cases according to the value of \( \theta \) - a scaling constant of the threshold function. Finally, the process using pretopological framework is compared to a classical one, the minimum spanning tree of the corresponding stock network, showing its pertinence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Whitesides, G.M., Ismagilov, R.F.: Complexity in chemistry. Science 284, 89–92 (1999). https://doi.org/10.1126/science.284.5411.89

    Article  Google Scholar 

  2. Parrish, J.K., Edelstein-Keshet, L.: Complexity, pattern, and evolutionary trade-offs in animal aggregation. Science 284, 99–101 (1999). https://doi.org/10.1126/science.284.5411.99

    Article  Google Scholar 

  3. Foote, R.: Mathematics and complex systems. Science 318, 410–412 (2007). https://doi.org/10.1126/science.1141754

    Article  MathSciNet  MATH  Google Scholar 

  4. Newman, M.E.J.: Complex systems: a survey. Am. J. Phys. 79, 800–810 (2011). https://doi.org/10.1119/1.3590372

    Article  Google Scholar 

  5. Albert, R., Jeong, H., Barabasi, A.L.: Error and attack tolerance of complex networks. Nature 406, 378–382 (2000). https://doi.org/10.1038/35019019

    Article  Google Scholar 

  6. Cohen, R., Erez, K., Ben-Avraham, D., Havlin, S.: Breakdown of the Internet under intentional attack. Phys. Rev. Lett. 86, 3682–3685 (2001). https://doi.org/10.1103/PhysRevLett.86.3682

    Article  Google Scholar 

  7. Nie, T., Guo, Z., Zhao, K., Lu, Z.-M.: New attack strategies for complex networks. Physica A 424, 248–253 (2015). https://doi.org/10.1016/j.physa.2015.01.004

    Article  Google Scholar 

  8. Nguyen, N.K.K., Nguyen, Q.: Resilience of stock cross-correlation network to random breakdown and intentional attack. In: Anh, L.H., Dong, L.S., Kreinovich, V., Thach, N.N. (eds.) ECONVN 2018. SCI, vol. 760, pp. 553–561. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73150-6_44

    Chapter  Google Scholar 

  9. Buldyrev, S.V., Parshani, R., Paul, G., Stanley, H.E., Havlin, S.: Catastrophic cascade of failures in interdependent networks. Nature 464, 1025–1028 (2010). https://doi.org/10.1038/nature08932

    Article  Google Scholar 

  10. Berezin, Y., Bashan, A., Danziger, M.M., Li, D., Havlin, S.: Localized attacks on spatially embedded networks with dependencies. Sci. Rep. 5, 8934 (2015). https://doi.org/10.1038/srep08934

    Article  Google Scholar 

  11. Belmandt, Z.: Basics of Pretopology. Hermann, Paris (2011)

    Google Scholar 

  12. Levorato, V., Bui, M.: Modeling the complex dynamics of distributed communities of the web with pretopology. In: Proceedings of the 7th International Workshop on Innovative Internet Community Systems (I2CS), Munich, Germany, p. 2 (2007)

    Google Scholar 

  13. Lamure, M., Bonnevay, S., Bui, M., Amor, S.B.: A stochastic and pretopological modeling aerial pollution of an urban area. Stud. Inform. Uni. 7, 410–426 (2009)

    Google Scholar 

  14. Amor, S.B., Bui, M., Lamure, M.: Modeling urban aerial pollution using stochastic pretopology. Afr. Math. Ann. J. Afr. Math. Uni. 1, 7–19 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Auray, J.-P., Duru, G., Mougeot, M.: A pretopological analysis of the input-output model. Eco. Lett. 2, 343–347 (1979). https://doi.org/10.1016/0165-1765(79)90048-X

    Article  MATH  Google Scholar 

  16. Bonnevay, S.: Pretopological operators for gray-level image analysis. Stud. Inform. Univ. 7, 175–195 (2009)

    Google Scholar 

  17. Petermann, C., Amor, S.B., Bui, A.: A pretopological multi-agents based model for an efficient and reliable Smart Grid simulation. In: 14th International Conference on Artificial Intelligence (ICAI), USA, pp. 354–360. CSREA Press (2012)

    Google Scholar 

  18. Guérard, G., Amor, S.B., Bui, A.: A context-free Smart Grid model using pretopologic structure. In: 14th International Conference on Smart Cities and Green ICT Systems, Lisbon, Portugal, vol. 1, pp. 335–341. SciTePress (2015). https://doi.org/10.5220/0005409203350341

  19. Mantegna, R.N.: Hierarchical structure in financial markets. Eur. Phys. J. B 11, 193–197 (1999). https://doi.org/10.1007/s100510050929

    Article  Google Scholar 

  20. Vandewalle, N., Brisbois, F., Tordoir, X.: Non-random topology of stock markets. Quant. Fi. 1, 372–374 (2001). https://doi.org/10.1088/1469-7688/1/3/308

    Article  MathSciNet  MATH  Google Scholar 

  21. Bonanno, G., Caldarelli, G., Lillo, F., Micciche, S., Vandewalle, N., Mantegna, R.N.: Networks of equities in financial markets. Eur. Phys. J. B 38, 363–371 (2004). https://doi.org/10.1140/epjb/e2004-00129-6

    Article  Google Scholar 

  22. Nguyen, Q., Nguyen, N.K.K., Nguyen, L.H.N.: Dynamic topology and allometric scaling behavior on the Vietnamese stock market. Physica A 514, 235–243 (2019). https://doi.org/10.1016/j.physa.2018.09.061

    Article  Google Scholar 

  23. Onnela, J.-P., Kaski, K., Kertsz, J.: Clustering and information in correlation based financial networks. Eur. Phys. J. B 38, 353–362 (2004). https://doi.org/10.1140/epjb/e2004-00128-7

    Article  Google Scholar 

  24. Garas, A., Argyrakis, P., Havlin, S.: The structural role of weak and strong links in a financial market network. Eur. Phys. J. B 63, 265–271 (2008). https://doi.org/10.1140/epjb/e2008-00237-3

    Article  MATH  Google Scholar 

Download references

Acknowledgement

This research is funded by Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh city, Vietnam under grant number B2018-42-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ngoc Kim Khanh Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, N.K.K., Nguyen, Q., Bui, M. (2019). Mining Stock Market Time Series and Modeling Stock Price Crash Using a Pretopological Framework. In: Nguyen, N., Chbeir, R., Exposito, E., AniortĂ©, P., TrawiÅ„ski, B. (eds) Computational Collective Intelligence. ICCCI 2019. Lecture Notes in Computer Science(), vol 11683. Springer, Cham. https://doi.org/10.1007/978-3-030-28377-3_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28377-3_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28376-6

  • Online ISBN: 978-3-030-28377-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics