Skip to main content

Basic and Ancillary Techniques in Bone Pathology

  • Chapter
  • First Online:
Tumors and Tumor-Like Lesions of Bone
  • 1796 Accesses

Abstract

In skeletal pathology diagnosis, most tumors and tumorlike conditions can be diagnosed with routine hematoxylin and eosin (H&E) stain, but sometimes this basic technique can be insufficient. Histochemical methods evaluate the state of the ossification process and intracellular activated enzymes (PAS, mucin stain, Congo red, von Kossa, etc.). Electron microscopy, flow cytometry, and histomorphometry have limited diagnostic uses. Immunohistochemical staining has been a helpful aid, especially in the diagnosis of round-cell tumors, metastatic disease, Langerhans cell histiocytosis, and vascular tumors. Karyotyping, molecular cytogenetic techniques such as FISH, and molecular techniques like blotting, PCR, and others have limited but effective application in the diagnosis of some specific bone tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Reference

  1. Stephens PJ, Greenman CD, Fu B, Yang F, Bignell GR, Mudie LJ, et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell. 2011;144:27–40.

    CAS  PubMed  PubMed Central  Google Scholar 

Suggested Reading

  • Alwine JC, Kemp DJ, Stark GR. Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. Proc Natl Acad Sci U S A. 1977;74:5350–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amary F, Berisha F, Ye H, Gupta M, Gutteridge A, Baumhoer D, et al. H3F3A (Histone 3.3) G34W immunohistochemistry: a reliable marker defining benign and malignant giant cell tumor of bone. Am J Surg Pathol. 2017;41:1059–68.

    PubMed  PubMed Central  Google Scholar 

  • Andersson C, Fagman H, Hansson M, Enlund F. Profiling of potential driver mutations in sarcomas by targeted next generation sequencing. Cancer Genet. 2016;209:154–60.

    CAS  PubMed  Google Scholar 

  • Arnould L, Denoux Y, MacGrogan G, Penault-Llorca F, Fiche M, Treilleux I, et al. Agreement between chromogenic in situ hybridisation (CISH) and FISH in the determination of HER2 status in breast cancer. Br J Cancer. 2003;88:1587–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bartlett JMS, Stirling D. A short history of the polymerase chain reaction. Methods Mol Biol. 2003;226:3–6.

    CAS  PubMed  Google Scholar 

  • Bayani J, Squire JA. Fluorescence in situ hybridization. Curr Protoc Cell Biol. 2004;23:22.4.1–52.

    Google Scholar 

  • Bayani J, Squire JA. Multi color FISH techniques. Curr Protoc Cell Biol. 2004;23:22.5.1–25.

    Google Scholar 

  • Bermingham N, Luettich K. Polymerase chain reaction and its applications. Curr Diagn Pathol. 2003;9:159–64.

    Google Scholar 

  • Bickmore WA. Karyotype analysis and chromosome banding encyclopedia of life science. London: Nature Publishing Group; 2001.

    Google Scholar 

  • Bignell GR, Greenman CD, Davies H, Butler AP, Edkins S, Andrews JM, et al. Signatures of mutation and selection in the cancer genome. Nature. 2010;463:893–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boggs BA, Chinault AC. Analysis of DNA replication by fluorescence in situ hybridization. Methods. 1997;13:259–70.

    CAS  PubMed  Google Scholar 

  • Brown T. Southern blotting. Curr Protoc Immunol. 2001;Suppl 6:10.6.1–12.

    Google Scholar 

  • Bustin SA, Mueller R. Real-time reverse transcription PCR (qRT-PCR) and its potential use in clinical diagnosis. Clin Sci. 2005;109:365–79.

    CAS  Google Scholar 

  • Cardona-Castro N, Agudelo-Florez P. Immunoenzymatic dot-blot test for the diagnosis of enteric fever caused by Salmonella typhi in an endemic area. Clin Microbiol Infect. 1998;4:64–9.

    PubMed  Google Scholar 

  • Davis JL, Horvai AE. Special AT-rich sequence-binding protein 2 (SATB2) expression is sensitive but may not be specific for osteosarcoma as compared with other high-grade primary bone sarcomas. Histopathology. 2016;69:84–90.

    PubMed  Google Scholar 

  • Ekong R, Wolf J. Advances in fluorescent in situ hybridization. Curr Opin Biotechnol. 1998;9:19–24.

    CAS  PubMed  Google Scholar 

  • Fadiel A, Naftolin F. Microarray applications and challenges: a vast array of possibilities. Int Arch Biosci. 2003;2003:1111–21.

    Google Scholar 

  • Francke U. Digitized and differentially shaded human chromosome ideograms for genomic applications. Cytogenet Cell Genet. 1994;65:206–19.

    CAS  PubMed  Google Scholar 

  • Geigl JB, Uhrig S, Speicher MR. Multiplex-fluorescence in situ hybridization for chromosome karyotyping. Nat Protoc. 2006;1:1172–84.

    CAS  PubMed  Google Scholar 

  • Goswami RS, Luthra R, Singh RR, Patel KP, Routbort MJ, Aldape KD, et al. Identification of factors affecting the success of next-generation sequencing testing in solid tumors. Am J Clin Pathol. 2016;145:222–37.

    PubMed  Google Scholar 

  • Gruver AM, Peerwani Z, Tubbs RR. Out of the darkness and into the light: bright field in situ hybridisation for delineation of ERBB2 (HER2) status in breast carcinoma. J Clin Pathol. 2010;63:210–9.

    PubMed  PubMed Central  Google Scholar 

  • Gupte A, Baker EK, Wan SS, Stewart E, Loh A, Shelat AA, et al. Systematic screening identifies dual PI3K and mTOR inhibition as a conserved therapeutic vulnerability in osteosarcoma. Clin Cancer Res. 2015;21:3216–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Higuchi R, Dollinger G, Walsh PS, Griffith R. Simultaneous amplification and detection of specific DNA-sequences. Bio/Technology. 1992;10:413–7.

    CAS  Google Scholar 

  • Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, Gray JW, Waldman F, Pinkel D. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science. 1992;258:818–21.

    CAS  PubMed  Google Scholar 

  • King RC, Stansfield WD, Mulligan PK. A dictionary of genetics. seventh ed. Oxford: Oxford University Press; 2006.

    Google Scholar 

  • Kubista M, Andrade JM, Bengtsson M, Forootan A, Jona J, Lind K, et al. The real-time polymerase chain reaction. Mol Asp Med. 2006;27:95–125.

    CAS  Google Scholar 

  • Kumar RM. The widely used diagnostics “DNA Microarray”--a review. Am J Infect Dis. 2009;5:207–18.

    CAS  Google Scholar 

  • Lambros MBK, Natrajan R, Reis-Filho JS. Chromogenic and fluorescent in situ hybridization in breast cancer. Hum Pathol. 2007;38:1105–22.

    CAS  PubMed  Google Scholar 

  • Lashkari DA, DeRisi JL, McCusker JH, Namath AF, Gentile C, Hwang SY, et al. Yeast microarrays for genome wide parallel genetic and gene expression analysis. Proc Natl Acad Sci U S A. 1997;94:13057–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maskos U, Southern EM. Oligonucleotide hybridizations on glass supports: a novel linker for oligonucleotide synthesis and hybridization properties of oligonucleotides synthesised in situ. Nucleic Acids Res. 1992;20:1679–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mearns G, Richmond SJ, Storey CC. Sensitive immune dot blot test for diagnosis of Chlamydia trachomatis infection. J Clin Microbiol. 1988;26:1810–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moelans CB, de Weger RA, der Wall V, van Diest PJ. Current technologies for HER2 testing in breast cancer. Crit Rev Oncol Hematol. 2011;80:380–92.

    CAS  PubMed  Google Scholar 

  • Oostlander AE, Meijer GA, Ylstra B. Microarray-based comparative genomic hybridization and its applications in human genetics. Clin Genet. 2004;66:488–95.

    CAS  PubMed  Google Scholar 

  • Pei J, Jhanwar SC, Testa JR. Chromothripsis in a case of TP53-deficient chronic lymphocytic leukemia. Leuk Res Rep. 2012;1:4–6.

    PubMed  PubMed Central  Google Scholar 

  • Pinkel D, Albertson DG. Comparative genomic hybridization. Annu Rev. Genomics Hum Genet. 2005;6:331–54.

    CAS  PubMed  Google Scholar 

  • Rosa FE, Santos RM, Rogatto SR, Domingues MAC. Chromogenic in situ hybridization compared with other approaches to evaluate HER2/neu status in breast carcinomas. Braz J Med Biol Res. 2013;46:207–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saiki R, Scharf S, Faloona F, Mullis K, Horn G, Erlich H, Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science. 1985;230:1350–4.

    CAS  PubMed  Google Scholar 

  • Sambrook J, Russel DW. Molecular cloning: a laboratory manual. third ed. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2001.

    Google Scholar 

  • Šášik R, Woelk CH, Corbeil J. Microarray truths and consequences. J Mol Endocrinol. 2004;33:1–9.

    PubMed  Google Scholar 

  • Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 1995;270:467–70.

    CAS  PubMed  Google Scholar 

  • Schena M, Shalon D, Heller R, Chai A, Brown PO, Davis RW. Parallel human genome analysis: microarray-based expression monitoring of 1000 genes. Proc Natl Acad Sci U S A. 1996;93:10614–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seidel C. Introduction to DNA microarrays, analysis of microarray data: a network-based approach. Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim; 2008.

    Google Scholar 

  • Streit S, Michalski CW, Erkan M, Kleef J, Friess H. Northern blot analysis for detection of RNA in pancreatic cancer cells and tissues. Nat Protoc. 2009;4:37–43.

    CAS  PubMed  Google Scholar 

  • Tanner M, Gancberg D, Di Leo A, Larsimont D, Rouas G, Piccart MJ, Isola J. Chromogenic in situ hybridization: a practical alternative for fluorescence in situ hybridization to detect HER2/neu oncogene amplification in archival breast cancer samples. Am J Pathol. 2000;157:1467–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979;76:4350–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vera-Cabrera L, Rendon A, Diaz-Rodriguez M, Handzel V, Laszlo A. Dot blot assay for detection of antidiacyltrehalose antibodies in tuberculous patients. Clin Diagn Lab Immunol. 1999;6:686–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vorsanova SG, Yurov YB, Iourov IY. Human interphase chromosomes: a review of available molecular cytogenetic technologies. Mol Cytogenet. 2010;3:1–15.

    PubMed  PubMed Central  Google Scholar 

  • Weiss MM, Hermsen MA, Meijer GA, Grieken NC, Baak JP, Kuipers EJ, van Diest PJ. Comparative genomic hybridization. Mol Pathol. 1999;52:243–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wong ML, Medrano JF. Real-time PCR for mRNA quantitation. BioTechniques. 2005;39:75–85.

    CAS  PubMed  Google Scholar 

  • Wyatt AW, Collins CC. In brief: chromothripsis and cancer. J Pathol. 2013;231:1–3.

    PubMed  Google Scholar 

  • Zhang N, Liu H, Yue G, Zhang Y, You J, Wang H. Molecular heterogeneity of Ewing sarcoma as detected by ion torrent sequencing. PLoS One. 2016;11:e0153546.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Na, K., Park, YK. (2020). Basic and Ancillary Techniques in Bone Pathology. In: Santini-Araujo, E., Kalil, R.K., Bertoni, F., Park, YK. (eds) Tumors and Tumor-Like Lesions of Bone. Springer, Cham. https://doi.org/10.1007/978-3-030-28315-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28315-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28314-8

  • Online ISBN: 978-3-030-28315-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics