Skip to main content

Using Multicore and Graphics Processors to Solve The Structural Inverse Gravimetry Problem in a Two-Layer Medium by Means of \(\alpha \)-Processes

  • Conference paper
  • First Online:
Parallel Computational Technologies (PCT 2019)

Abstract

We construct memory-optimized and time-efficient parallel algorithms (and the corresponding programs) taking advantage of regularized modified \(\alpha \)-processes, namely the modified steepest descent method and the modified minimal residual method, for solving the nonlinear equation of the structural inverse gravimetry problem. Memory optimization relies on the block-Toeplitz structure of the Jacobian matrix. The algorithms are implemented on multicore CPUs and GPUs through the use of, respectively, OpenMP and NVIDIA CUDA technologies. We analyze the efficiency and speedup of the algorithms. In addition, we solve a model problem of gravimetry and conduct a comparative study regarding the number of iterations and computation time against algorithms based on conjugate gradient-type methods and the componentwise gradient method. The comparison demonstrates that the algorithms based on \(\alpha \)-processes perform better, reducing the number of iterations and the computation time by as much asĀ 50%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akimova, E.N., Martyshko, P.S., Misilov, V.E.: Algorithms for solving the structural gravity problem in a multilayer medium. Doklady Earth Sci. 453(2), 1278ā€“1281 (2013). https://doi.org/10.1134/S1028334X13120180

    ArticleĀ  MATHĀ  Google ScholarĀ 

  2. Akimova, E.N., Martyshko, P.S., Misilov, V.E.: Parallel algorithms for solving structural inverse magnetometry problem on multucore and graphics processors. In: Proceedings of 14th International multidisciplinary scientific GeoConference SGEM 2014, vol. 1, no. 2, pp. 713ā€“720 (2014)

    Google ScholarĀ 

  3. Akimova, E.N., Martyshko, P.S., Misilov, V.E.: A fast parallel gradient algorithm for solving structural inverse gravity problem. In: AIP Conference Proceedings, vol. 1648, p. 850063 (2015). https://doi.org/10.1063/1.4913118

  4. Akimova, E.N., Martyshko, P.S., Misilov, V.E., Kosivets, R.A.: An efficient numerical technique for solving the inverse gravity problem of finding a lateral density. Appl. Math. Inf. Sci. 10(5), 1681ā€“1688 (2016). https://doi.org/10.18576/amis/100506

    ArticleĀ  Google ScholarĀ 

  5. Akimova, E.N., Misilov, V.E.: A fast componentwise gradient method for solving structural inverse gravity problem. In: Proceedings of 15th International Multidisciplinary Scientific GeoConference SGEM 2015, vol. 3, no. 1, pp. 775ā€“782 (2015)

    Google ScholarĀ 

  6. Akimova, E.N., Misilov, V.E. Arguchinsky, M.S.: Memory efficient algorithm for solving the inverse problem of finding a density in a curvilinear layer. In: CEUR Workshop Proceedings, vol. 2076, pp. 1ā€“8 (2018)

    Google ScholarĀ 

  7. Akimova, E.N., Misilov, V.E., Tretyakov, A.I.: Regularized methods for solving nonlinear inverse gravity problem. In: EAGE Geoinformatics (2016). https://doi.org/10.3997/2214-4609.201600458

  8. Akimova, E.N., Misilov, V.E., Tretyakov, A.I.: Optimized algorithms for solving the structural inverse gravimetry and magnetometry problems on GPUs. Commun. Comput. Inf. Sci. 753, 144ā€“155 (2017). https://doi.org/10.1007/978-3-319-67035-5_11

    ArticleĀ  Google ScholarĀ 

  9. Akimova, E.N., Vasin, V.V.: Stable parallel algorithms for solving the inverse gravimetry and magnetometry problems. Int. J. Eng. Model. - Univ. Split Croatia 17(1ā€“2), 13ā€“19 (2004)

    Google ScholarĀ 

  10. Akimova, E.N., Vasin, V.V., Misilov, V.E.: Iterative Newton type algorithms and its applications to inverse gravimetry problem. Bull. South Ural State Univ. Ser. Math. Modell. Programm. Comput. Softw. 6(3), 26ā€“37 (2013)

    MATHĀ  Google ScholarĀ 

  11. Bakushinskiy, A., Goncharsky, A.: Ill-Posed Problems: Theory and Applications. Springer, Heidelberg (1994). https://doi.org/10.1007/978-94-011-1026-6

    BookĀ  Google ScholarĀ 

  12. Kantorovich, L.V., Akilov, G.P.: Functional Analysis in Normed Spaces, International Series of Monographs in Pure and Applied Mathematics. The Macmillan Co., New York (1964)

    Google ScholarĀ 

  13. Malkin, N.R.: On solution of inverse magnetic problem for one contact surface (the case of layered masses). In: DAN SSSR, Ser. A, no. 9, pp. 232ā€“235 (1931)

    Google ScholarĀ 

  14. Martyshko, P.S., Akimova, E.N., Misilov, V.E.: Solving the structural inverse gravity problem by the modified gradient methods. Izvestiya, Physics of the Solid Earth 52(5), 704ā€“708 (2016)

    ArticleĀ  Google ScholarĀ 

  15. Martyshko, P.S., Fedorova, N.V., Akimova, E.N., Gemaidinov, D.V.: Studying the structural features of the lithospheric magnetic and gravity fields with the use of parallel algorithms. Izvestiya Phys. Solid Earth 50(4), 508ā€“513 (2014). https://doi.org/10.1134/S1069351314040090

    ArticleĀ  Google ScholarĀ 

  16. Martyshko, P.S., Prutkin, I.L.: Technology of depth distribution of gravity field sources. Geophys. J 25(3), 159ā€“168 (2003)

    Google ScholarĀ 

  17. Numerov, B.V.: Interpretation of gravitational observations in the case of one contact surface. In: Doklady Akad. Nauk SSSR, pp. 569ā€“574 (1930)

    Google ScholarĀ 

  18. Vasin, V.V.: Irregular nonlinear operator equations: Tikhonovā€™s regularization and iterative approximation. J. Inverse Ill-Posed Probl. 21(1), 109ā€“123 (2013). https://doi.org/10.1515/jip-2012-0084

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  19. Vasin, V.V.: Modified steepest descent method for nonlinear irregular operator equations. Doklady Math. 91(3), 300ā€“303 (2015). https://doi.org/10.1134/S1064562415030187

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  20. Vasin, V.V.: Regularized modified \(\alpha \)-processes for nonlinear equations with monotone operators. Dokl. Math. 94(1), 361ā€“364 (2016). https://doi.org/10.1134/S1064562416040062

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  21. Vasin, V.V., Skurydina, A.F.: Two-stage method of construction of regularizing algorithms for nonlinear Ill-posed problems. Proc. Steklov Inst. Math. 301, 173ā€“190 (2018). https://doi.org/10.1134/S0081543818050152

    ArticleĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena N. Akimova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Akimova, E.N., Misilov, V.E., Tretyakov, A.I. (2019). Using Multicore and Graphics Processors to Solve The Structural Inverse Gravimetry Problem in a Two-Layer Medium by Means of \(\alpha \)-Processes. In: Sokolinsky, L., Zymbler, M. (eds) Parallel Computational Technologies. PCT 2019. Communications in Computer and Information Science, vol 1063. Springer, Cham. https://doi.org/10.1007/978-3-030-28163-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28163-2_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28162-5

  • Online ISBN: 978-3-030-28163-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics