Skip to main content

Molecular Aspects of Thermal Tolerance and Exertional Heat Illness Susceptibility

  • Chapter
  • First Online:
Exertional Heat Illness
  • 808 Accesses

Abstract

Thermoregulation includes many physiological, molecular/cellular, and genetic mechanisms that are highlighted in Chap. 2. Molecular and cellular mechanisms of thermal tolerance (on a whole-body level) and relationships to EHS (exertional heat stroke) susceptibility include pathways associated with immune, endocrine, antioxidant, metabolic, skeletal muscle, and nervous system function. Research clearly implicates pathophysiology arising from LPS (lipopolysaccharide)-induced TLR4 (toll-like receptor 4) activation and subsequent endotoxemia/sepsis-induced inflammation and tissue damage. However, the role is not clearly defined because many have not considered the vast complexity in LPS and TLR-associated positive feedback to inflammation. We present aspects of immune function that complicate the relationship between endotoxemia and EHS pathophysiology that should be studied in future research and make it difficult to associate immune-related genotypes with EHS risk. Additionally, we present molecular targets of pharmacological treatments and individual genotypes associated with susceptibility to heat stress and MH (malignant hyperthermia) to depict novel molecular mechanisms likely associated with pathophysiology and EHS susceptibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Casa DJ, DeMartini JK, Bergeron MF, Csillan D, Eichner ER, Lopez RM, et al. National Athletic Trainers’ Association position statement: exertional heat illnesses. J Athl Train. 2015;50(9):986–1000.

    PubMed  PubMed Central  Google Scholar 

  2. Armstrong LE, Lee EC, Armstrong EM. Interactions of gut microbiota, endotoxemia, immune function, and diet in exertional heatstroke. J Sports Med (Hindawi Publ Corp). 2018;2018:5724575.

    Google Scholar 

  3. Bouchama A, Knochel P. Heat stroke. N Engl J Med. 2002;346(25):1978–88.

    Article  CAS  PubMed  Google Scholar 

  4. Lim CL, Mackinnon LT. The roles of exercise-induced immune system disturbances in the pathology of heat stroke. Sports Med. 2006;36(1):39–64.

    Article  PubMed  Google Scholar 

  5. Lim C. Heat Sepsis precedes heat toxicity in the pathophysiology of heat stroke—a new paradigm on an ancient disease. Antioxidants. 2018;7(11):149.

    Article  PubMed Central  CAS  Google Scholar 

  6. Maron MB, Wagner JA, Horvath SM. Thermoregulatory responses during competitive marathon running. J Appl Physiol. 1977;42(6):909–14.

    Article  CAS  PubMed  Google Scholar 

  7. Byrne C, Lee JK, Chew SA, Lim CL, Tan EY. Continuous thermoregulatory responses to mass-participation distance running in heat. Med Sci Sports Exerc. 2006;38(5):803–10.

    Article  PubMed  Google Scholar 

  8. Sithinamsuwan P, Piyavechviratana K, Kitthaweesin T, Chusri W, Orrawanhanothai P, Wongsa A, et al.; Phramongkutklao Army Hospital Exertional Heatstroke Study Team. Exertional heatstroke: early recognition and outcome with aggressive combined cooling—a 12-year experience. Mil Med 2009;174(5):496–502.

    Article  PubMed  Google Scholar 

  9. Binkley HM, Beckett J, Casa DJ, Kleiner DM, Plummer PE. National Athletic Trainers’ association position statement: exertional heat illnesses. J Athl Train. 2002;37(3):329–43.

    PubMed  PubMed Central  Google Scholar 

  10. Cleary M. Predisposing risk factors on susceptibility to exertional heat illness: clinical decision-making considerations. J Sport Rehabil. 2007;16(3):204–14.

    Article  PubMed  Google Scholar 

  11. Navarro CS, Casa DJ, Belval LN, Nye NS. Exertional heat stroke. Curr Sports Med Rep. 2017;16(5):304–5.

    Article  PubMed  Google Scholar 

  12. Hifumi T, Kondo Y, Shimazaki J, Oda Y, Shiraishi S, Wakasugi M, et al. Prognostic significance of disseminated intravascular coagulation in patients with heat stroke in a nationwide registry. J Crit Care. 2018;44:306–11.

    Article  PubMed  Google Scholar 

  13. Hifumi T, Kondo Y, Shimizu K, Miyake Y. Heat stroke. J Intensive Care. 2018;6:30. https://doi.org/10.1186/s40560-018-0298-4. Review

    Article  PubMed  PubMed Central  Google Scholar 

  14. Snipe RMJ, Khoo A, Kitic CM, Gibson PR, Costa RJS. The impact of mild heat stress during prolonged running on gastrointestinal integrity, gastrointestinal symptoms, systemic endotoxin and cytokine profiles. Int J Sports Med. 2018;39:255. https://doi.org/10.1055/s-0043-122742. [Epub ahead of print].

    Article  CAS  Google Scholar 

  15. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 2016;315(8):801–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Costrini AM, Pitt HA, Gustafson AB, Uddin DE. Cardiovascular and metabolic manifestations of heat stroke and severe heat exhaustion. Am J Med. 1979;66(2):296–302.

    Article  CAS  PubMed  Google Scholar 

  17. Lambert GP. Intestinal barrier dysfunction, endotoxemia, and gastrointestinal symptoms: the ‘canary in the coal mine’ during exercise-heat stress? Med Sport Sci. 2008;53:61–73.

    Article  PubMed  Google Scholar 

  18. Leon LR, Helwig BG. Heat stroke: role of the systemic inflammatory response. J Appl Physiol (1985). 2010;109(6):1980–8.

    Article  CAS  Google Scholar 

  19. Assimakopoulos SF, Triantos C, Thomopoulos K, Fligou F, Maroulis I, Marangos M, Gogos CA. Gut-origin sepsis in the critically ill patient: pathophysiology and treatment. Infection. 2018;46(6):751–60.

    Article  CAS  PubMed  Google Scholar 

  20. Dokladny K, Zuhl MN, Moseley PL. Intestinal epithelial barrier function and tight junction proteins with heat and exercise. J Appl Physiol (1985). 2016;120(6):692–701.

    Article  CAS  Google Scholar 

  21. Nutsch KM, Hsieh CS. T cell tolerance and immunity to commensal bacteria. Curr Opin Immunol. 2012;24(4):385–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hall DM, Baumgardner KR, Oberley TD, Gisolfi CV. Splanchnic tissues undergo hypoxic stress during whole body hyperthermia. Am J Physiol. 1999;276(5):G1195–203.

    CAS  PubMed  Google Scholar 

  23. Mercer DW, Smith GS, Cross JM, Russell DH, Chang L, Cacioppo J. Effects of lipopolysaccharide on intestinal injury: potential role of nitric oxide and lipid peroxidation. J Surg Res. 1996;63(1):185–92.20.

    Article  CAS  PubMed  Google Scholar 

  24. Costa RJS, Snipe RMJ, Kitic CM, Gibson PR. Systematic review: exercise-induced gastrointestinal syndrome-implications for health and intestinal disease. Aliment Pharmacol Ther. 2017;46(3):246–65.

    Article  CAS  PubMed  Google Scholar 

  25. Lambert GP, Boylan M, Laventure JP, Bull A, Lanspa S. Effect of aspirin and ibuprofen on GI permeability during exercise. Int J Sports Med. 2007;28(9):722–6.

    Article  CAS  PubMed  Google Scholar 

  26. Guy J, Vincent G. Nutrition and supplementation considerations to limit endotoxemia when exercising in the heat. Sports (Basel). 2018;6(1):pii: E12. https://doi.org/10.3390/sports6010012.

    Article  Google Scholar 

  27. Boutagy NE, McMillan RP, Frisard MI, Hulver MW. Metabolic endotoxemia with obesity: is it real and is it relevant? Biochimie. 2016;124:11–20.

    Article  CAS  PubMed  Google Scholar 

  28. Viswanathan VK, Hodges K, Hecht G. Enteric infection meets intestinal function:how bacterial pathogens cause diarrhoea. Nat Rev Microbiol. 2009;7(2):110–9.

    Article  CAS  PubMed  Google Scholar 

  29. Turner JR. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol. 2009;9(11):799–809.

    Article  CAS  PubMed  Google Scholar 

  30. Wiersinga WJ, Leopold SJ, Cranendonk DR, van der Poll T. Host innate immune responses to sepsis. Virulence. 2014;5(1):36–44.

    Article  PubMed  Google Scholar 

  31. Goh J, Behringer M. Exercise alarms the immune system: a HMGB1 perspective. Cytokine. 2018;110:222–5.

    Article  CAS  PubMed  Google Scholar 

  32. Seys SF, Hox V, Van Gerven L, Dilissen E, Marijsse G, Peeters E, et al. Damage-associated molecular pattern and innate cytokine release in the airways of competitive swimmers. Allergy. 2015;70(2):187–94.

    Article  CAS  PubMed  Google Scholar 

  33. Pfalzgraff A, Weindl G. Intracellular lipopolysaccharide sensing as a potential therapeutic target for sepsis. Trends Pharmacol Sci. 2019;40(3):187–97.

    Article  CAS  PubMed  Google Scholar 

  34. Gupta A, Cooper ZA, Tulapurkar ME, Potla R, Maity T, Hasday JD, Singh IS. Toll-like receptor agonists and febrile range hyperthermia synergize to induce heat shock protein 70 expression and extracellular release. J Biol Chem. 2013;288(4):2756–66.

    Article  CAS  PubMed  Google Scholar 

  35. Tulapurkar ME, Ramarathnam A, Hasday JD, Singh IS. Bacterial lipopolysaccharide augments febrile-range hyperthermia-induced heat shock protein 70 expression and extracellular release in human THP1 cells. PLoS One. 2015;10(2):e0118010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Cooper ZA, Ghosh A, Gupta A, Maity T, Benjamin IJ, Vogel SN, et al. Febrile-range temperature modifies cytokine gene expression in LPS-stimulated macrophages by differentially modifying NF-{kappa}B recruitment to cytokine gene promoters. Am J Physiol Cell Physiol. 2010;298(1):C171–81.

    Article  CAS  PubMed  Google Scholar 

  37. Cooper ZA, Singh IS, Hasday JD. Febrile range temperature represses TNF-alpha gene expression in LPS-stimulated macrophages by selectively blocking recruitment of Sp1 to the TNF-alpha promoter. Cell Stress Chaperones. 2010;15(5):665–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kayagaki N, Wong MT, Stowe IB, Ramani SR, Gonzalez LC, Akashi-Takamura S, et al. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science. 2013;341(6151):1246–9.

    Article  CAS  PubMed  Google Scholar 

  39. Wacker MA, Teghanemt A, Weiss JP, Barker JH. High-affinity caspase-4 binding to LPS presented as high molecular mass aggregates or in outer membrane vesicles. Innate Immun. 2017;23(4):336–44.

    Article  CAS  PubMed  Google Scholar 

  40. Lindquist S, Craig EA. The heat-shock proteins. Annu Rev Genet. 1988;22:631–77.

    Article  CAS  PubMed  Google Scholar 

  41. Lee EC, Muñoz CX, McDermott BP, Beasley KN, Yamamoto LM, Hom LL, et al. Extracellular and cellular Hsp72 differ as biomarkers in acute exercise/environmental stress and recovery. Scand J Med Sci Sports. 2017;27(1):66–74.

    Article  PubMed  Google Scholar 

  42. Chase MA, Wheeler DS, Lierl KM, Hughes VS, Wong HR, Page K. Hsp72 induces inflammation and regulates cytokine production in airway epithelium through a TLR4- and NF-kappaB-dependent mechanism. J Immunol. 2007;179(9):6318–24.

    Article  CAS  PubMed  Google Scholar 

  43. Wheeler DS, Chase MA, Senft AP, Poynter SE, Wong HR, Page K. Extracellular Hsp72, an endogenous DAMP, is released by virally infected airway epithelial cells and activates neutrophils via Toll-like receptor (TLR)-4. Respir Res. 2009;10:31. https://doi.org/10.1186/1465-9921-10-31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kourtis N, Nikoletopoulou V, Tavernarakis N. Small heat-shock proteins protect from heat stroke-associated neurodegeneration. Nature. 2012;490(7419):213–8.

    Article  CAS  PubMed  Google Scholar 

  45. Chen ZC, Wu WS, Lin MT, Hsu CC. Protective effect of transgenic expression of porcine heat shock protein 70 on hypothalamic ischemic and oxidative damage in a mouse model of heatstroke. BMC Neurosci. 2009;10:111. https://doi.org/10.1186/1471-2202-10-111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee WC, Wen HC, Chang CP, Chen MY, Lin MT. Heat shock protein 72 overexpression protects against hyperthermia, circulatory shock, and cerebral ischemia during heatstroke. J Appl Physiol (1985). 2006;100(6):2073–82.

    Article  CAS  Google Scholar 

  47. Hung CH, Chang NC, Cheng BC, Lin MT. Progressive exercise preconditioning protects against circulatory shock during experimental heatstroke. Shock. 2005;23(5):426–33.

    Article  PubMed  Google Scholar 

  48. Basiricò L, Morera P, Primi V, Lacetera N, Nardone A, Bernabucci U. Cellular thermotolerance is associated with heat shock protein 70.1 genetic polymorphisms in Holstein lactating cows. Cell Stress Chaperones. 2011;16(4):441–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Lockwood B, Julick CR, Montooth KL. Maternal loading of a small heat shock protein increases embryo thermal tolerance in Drosophila melanogaster. J Exp Biol. 2017;220(Pt 23):4492–501.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sodhi M, Mukesh M, Kishore A, Mishra BP, Kataria RS, Joshi BK. Novel polymorphisms in UTR and coding region of inducible heat shock protein 70.1 gene in tropically adapted Indian zebu cattle (Bos indicus) and riverine buffalo (Bubalus bubalis). Gene. 2013;527(2):606–15.

    Article  CAS  PubMed  Google Scholar 

  51. Bouchama A, Kwaasi A, Dehbi M, Al Mohanna F, Eldali A, El-Sayed R, et al. Glucocorticoids do not protect against the lethal effects of experimental heatstroke in baboons. Shock. 2007;27(5):578–83.

    Article  CAS  PubMed  Google Scholar 

  52. Gathiram P, Wells MT, Brock-Utne JG, Gaffin SL. Prophylactic corticosteroid increases survival in experimental heat stroke in primates. Aviat Space Environ Med. 1988;59(4):352–5.

    CAS  PubMed  Google Scholar 

  53. Lim CL, Wilson G, Brown L, Coombes JS, Mackinnon LT. Pre-existing inflammatory state compromises heat tolerance in rats exposed to heat stress. Am J Physiol Regul Integr Comp Physiol. 2007;292(1):R186–94.

    Article  CAS  PubMed  Google Scholar 

  54. Liu CC, Chien CH, Lin MT. Glucocorticoids reduce interleukin-1 concentration and result in neuroprotective effects in rat heatstroke. J Physiol. 2000;527(Pt 2):333–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wu WS, Chou MT, Chao CM, Chang CK, Lin MT, Chang CP. Melatonin reduces acute lung inflammation, edema, and hemorrhage in heatstroke rats. Acta Pharmacol Sin. 2012;33(6):775–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tian YF, Lin CH, Hsu SF, Lin MT. Melatonin improves outcomes of heatstroke in mice by reducing brain inflammation and oxidative damage and multiple organ dysfunction. Mediators Inflamm. 2013;2013:349280.

    PubMed  PubMed Central  Google Scholar 

  57. Chen SH, Lin MT, Chang CP. Ischemic and oxidative damage to the hypothalamus may be responsible for heat stroke. Curr Neuropharmacol. 2013;11(2):129–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Smith R, Jones N, Martin D, Kipps C. ‘Too much of a coincidence’: identical twins with exertional heatstroke in the same race. BMJ Case Rep. 2016;2016 https://doi.org/10.1136/bcr-2015-212592.

  59. Hosokawa Y, Casa DJ, Rosenberg H, Capacchione JF, Sagui E, Riazi S, et al. Round table on malignant hyperthermia in physically active populations: meeting proceedings. J Athl Train. 2017;52(4):377–83.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Rosenberg H, Sambuughin N, Riazi S, Dirksen R. Malignant hypertermia susceptibility. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, LJH B, Stephens K, Amemiya A, editors. GeneReviews® [Internet]. Seattle: University of Washington, Seattle; 1993–2019.

    Google Scholar 

  61. Monnier N, Procaccio V, Stieglitz P, Lunardi J. Malignant-hyperthermia susceptibility is associated with a mutation of the alpha 1-subunit of the human dihydropyridine-sensitive L-type voltage-dependent calcium-channel receptor in skeletal muscle. Am J Hum Genet. 1997;60(6):1316–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Heytens K, De Bleecker J, Verbrugghe W, Baets J, Heytens L. Exertional rhabdomyolysis and heat stroke: beware of volatile anesthetic sedation. World J Crit Care Med. 2017;6(1):21–7.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Sagui E, Montigon C, Abriat A, Jouvion A, Duron-Martinaud S, Canini F, et al. Is there a link between exertional heat stroke and susceptibility to malignant hyperthermia? PLoS One. 2015;10(8):e0135496.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Thomas J, Crowhurst T. Exertional heat stroke, rhabdomyolysis and susceptibility to malignant hyperthermia. Intern Med J. 2013;43(9):1035–8.

    Article  CAS  PubMed  Google Scholar 

  65. Capacchione JF, Muldoon SM. The relationship between exertional heat illness, exertional rhabdomyolysis, and malignant hyperthermia. Anesth Analg. 2009;109(4):1065–9.

    Article  PubMed  Google Scholar 

  66. Gronert GA, Thompson RL, Onofrio BM. Human malignant hyperthermia: awake episodes and correction by dantrolene. Anesth Analg. 1980;59(5):377–8.

    Article  CAS  PubMed  Google Scholar 

  67. Lister D, Hall GM, Lucke JN. Letter: malignant hyperthermia: a human and procine stress syndrome? Lancet. 1975;305(7905):519.

    Article  Google Scholar 

  68. Groom L, Muldoon SM, Tang ZZ, Brandom BW, Bayarsaikhan M, Bina S, et al. Identical de novo mutation in the type 1 ryanodine receptor gene associated with fatal, stress-induced malignant hyperthermia in two unrelated families. Anesthesiology. 2011;115(5):938–45.

    Article  CAS  PubMed  Google Scholar 

  69. Muldoon S, Deuster P, Brandom B, Bunger R. Is there a link between malignant hyperthermia and exertional heat illness? Exerc Sport Sci Rev. 2004;32(4):174–9.

    Article  PubMed  Google Scholar 

  70. Wappler F, Fiege M, Antz M, Schulte am Esch J. Hemodynamic and metabolic alterations in response to graded exercise in a patient susceptible to malignant hyperthermia. Anesthesiology. 2000;92(1):268–72.

    Article  CAS  PubMed  Google Scholar 

  71. Bendahan D, Kozak-Ribbens G, Confort-Gouny S, Ghattas B, Figarella-Branger D, Aubert M, Cozzone PJ. A noninvasive investigation of muscle energetics supports similarities between exertional heat stroke and malignant hyperthermia. Anesth Analg. 2001;93(3):683–9.

    Article  CAS  PubMed  Google Scholar 

  72. Robinson RL, Monnier N, Wolz W, Jung M, Reis A, Nuernberg G, et al. A genome wide search for susceptibility loci in three European malignant hyperthermia pedigrees. Hum Mol Genet. 1997;6(6):953–61.

    Article  CAS  PubMed  Google Scholar 

  73. Iles DE, Lehmann-Horn F, Scherer SW, Tsui LC, Olde Weghuis D, Suijkerbuijk RF, et al. Localization of the gene encoding the alpha 2/delta-subunits of the L-type voltage-dependent calcium channel to chromosome 7q and analysis of the segregation of flanking markers in malignant hyperthermia susceptible families. Hum Mol Genet. 1994;3(6):969–75.

    Article  CAS  PubMed  Google Scholar 

  74. Sudbrak R, Golla A, Hogan K, Powers P, Gregg R, Du Chesne I, et al. Exclusion of malignant hyperthermia susceptibility (MHS) from a putative MHS2 locus on chromosome 17q and of the alpha 1, beta 1, and gamma subunits of the dihydropyridine receptor calcium channel as candidates for the molecular defect. Hum Mol Genet. 1993;2(7):857–62.

    Article  CAS  PubMed  Google Scholar 

  75. Fiszer D, Shaw MA, Fisher NA, Carr IM, Gupta PK, Watkins EJ, et al. Next-generation sequencing of RYR1 and CACNA1S in malignant hyperthermia and exertional heat illness. Anesthesiology. 2015;122(5):1033–46.

    Article  CAS  PubMed  Google Scholar 

  76. Roux-Buisson N, Monnier N, Sagui E, Abriat A, Brosset C, Bendahan D, et al. Identification of variants of the ryanodine receptor type 1 in patients with exertional heat stroke and positive response to the malignant hyperthermia in vitro contracture test. Br J Anaesth. 2016;116(4):566–8.

    Article  CAS  PubMed  Google Scholar 

  77. Protasi F, Paolini C, Dainese M. Calsequestrin-1: a new candidate gene for malignant hyperthermia and exertional/environmental heat stroke. J Physiol. 2009;587(Pt 13):3095–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Li Y, Wang Y, Ma L. An association study of CASQ1 gene polymorphisms and heat stroke. Genomics Proteomics Bioinformatics. 2014;12(3):127–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kraeva N, Zvaritch E, Frodis W, Sizova O, Kraev A, MacLennan DH, Riazi S. CASQ1 gene is an unlikely candidate for malignant hyperthermia susceptibility in the North American population. Anesthesiology. 2013;118(2):344–9.

    Article  CAS  PubMed  Google Scholar 

  80. Levitt RC, Nouri N, Jedlicka AE, McKusick VA, Marks AR, Shutack JG, et al. Evidence for genetic heterogeneity in malignant hyperthermia susceptibility. Genomics. 1991;11(3):543–7.

    Article  CAS  PubMed  Google Scholar 

  81. Olckers A, Meyers DA, Meyers S, Taylor EW, Fletcher JE, Rosenberg H, et al. Adult muscle sodium channel alpha-subunit is a gene candidate for malignant hyperthermia susceptibility. Genomics. 1992;14(3):829–31.

    Article  CAS  PubMed  Google Scholar 

  82. Sudbrak R, Procaccio V, Klausnitzer M, Curran JL, Monsieurs K, van Broeckhoven C, et al. Mapping of a further malignant hyperthermia susceptibility locus to chromosome 3q13.1. Am J Hum Genet. 1995;56(3):684–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Abeele FV, Lotteau S, Ducreux S, Dubois C, Monnier N, Hanna A, et al. TRPV1 variants impair intracellular Ca2+ signaling and may confer susceptibility to malignant hyperthermia. Genet Med. 2019;21(2):441–50.

    Article  CAS  Google Scholar 

  84. Zhu YH, Pei ZM. GSK2193874 treatment at heatstroke onset reduced cell apoptosis in heatstroke mice. Cell Mol Biol (Noisy-le-Grand). 2018;64(7):36–42.

    Article  Google Scholar 

  85. Bhuiyan ZA, van den Berg MP, van Tintelen JP, Bink-Boelkens MT, Wiesfeld AC, Alders M, et al. Expanding spectrum of human RYR2-related disease: new electrocardiographic, structural, and genetic features. Circulation. 2007;116(14):1569–76.

    Article  PubMed  Google Scholar 

  86. Chui DH, Dover GJ. Sickle cell disease: no longer a single gene disorder. Curr Opin Pediatr. 2001;13(1):22–7.

    Article  CAS  PubMed  Google Scholar 

  87. Loosemore M, Walsh SB, Morris E, Stewart G, Porter JB, Montgomery H. Sudden exertional death in sickle cell trait. Br J Sports Med. 2012;46(5):312–4.

    Article  PubMed  Google Scholar 

  88. Stuart MJ, Nagel RL. Sickle-cell disease. Lancet. 2004;364(9442):1343–60.

    Article  PubMed  Google Scholar 

  89. Cao A, Galanello R. Beta-thalassemia. Genet Med. 2010;12(2):61–76.

    Article  CAS  PubMed  Google Scholar 

  90. Harmon KG, Drezner JA, Klossner D, Asif IM. Sickle cell trait associated with a RR of death of 37 times in National Collegiate Athletic Association football athletes: a database with 2 million athlete-years as the denominator. Br J Sports Med. 2012;46(5):25–30.

    Article  Google Scholar 

  91. Kark JA, Posey DM, Schumacher HR, Ruehle CJ. Sickle-cell trait as a risk factor for sudden death in physical training. N Engl J Med. 1987;317(13):781–7.

    Article  CAS  PubMed  Google Scholar 

  92. Asplund CA, O’Connor FH. Challenging return to play decisions: heat stroke, exertional rhabdomyolysis, and exertional collapse associated with sickle cell trait. Sports Health. 2016;8(2):117–25.

    Article  PubMed  Google Scholar 

  93. Eichner ER. Sickle cell considerations in athletes. Clin Sports Med. 2011;30(3):537–49.

    Article  PubMed  Google Scholar 

  94. Nelson DA, Deuster PA, O’Connor FG, Kurina LM. Sickle cell trait and heat injury among US army soldiers. Am J Epidemiol. 2018;187(3):523–8.

    Article  PubMed  Google Scholar 

  95. Pretzlaff RK. Death of an adolescent athlete with sickle cell trait caused by exertional heat stroke. Pediatr Crit Care Med. 2002;3(3):308–10.

    Article  PubMed  Google Scholar 

  96. Singer DE, Byrne C, Chen L, Shao S, Goldsmith J, Niebuhr DW. Risk of exertional heat illnesses associated with sickle cell trait in U.S. military. Mil Med. 2018;183(7–8):e310–7.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Szczepanik ME, Heled Y, Capacchione J, Campbell W, Deuster P, O’Connor FG. Exertional rhabdomyolysis: identification and evaluation of the athlete at risk for recurrence. Curr Sports Med Rep. 2014;13(2):113–9.

    Article  PubMed  Google Scholar 

  98. Kenney K, Landau ME, Gonzalez RS, Hundertmark J, O’Brien K, Campbell WW. Serum creatine kinase after exercise: drawing the line between physiological response and exertional rhabdomyolysis. Muscle Nerve. 2012;45(3):356–62.

    Article  CAS  PubMed  Google Scholar 

  99. Deschauer M, Wieser T, Zierz S. Muscle carnitine palmitoyltransferase II deficiency: clinical and molecular genetic features and diagnostic aspects. Arch Neurol. 2005;62(1):37–41.

    Article  PubMed  Google Scholar 

  100. Oda J, Yukioka T, Azuma K, Arai T, Chida J, Kido H. Endogenous genetic risk factor for serious heatstroke: the thermolabile phenotype of carnitine palmitoyltransferase II variant. Acute Med Surg. 2019;6(1):25–9.

    Article  PubMed  Google Scholar 

  101. Andresen BS, Olpin S, Poorthuis BJ, Scholte HR, Vianey-Saban C, Wanders R, et al. Clear correlation of genotype with disease phenotype in very-long-chain acyl-CoA dehydrogenase deficiency. Am J Hum Genet. 1999;64(2):479–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Shirao K, Okada S, Tajima G, Tsumura M, Hara K, Yasunaga S, et al. Molecular pathogenesis of a novel mutation, G108D, in short-chain acyl-CoA dehydrogenase identified in subjects with short-chain acyl-CoA dehydrogenase deficiency. Hum Genet. 2010;127(6):619–28.

    Article  CAS  PubMed  Google Scholar 

  103. Matsubara Y, Kraus JP, Yang-Feng TL, Francke U, Rosenberg LE, Tanaka K. Molecular cloning of cDNAs encoding rat and human medium-chain acyl-CoA dehydrogenase and assignment of the gene to human chromosome 1. Proc Natl Acad Sci U S A. 1986;83(17):6543–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Chen YT. Glycogen storage diseases. In: Scriver CR, Beaudet AL, Sly WS, Vale D, Childs B, et al., editors. The metabolic & molecular basis of inherited diseases. New York: McGraw-Hill; 2001. p. 1521–52.

    Google Scholar 

  105. Mommaerts WF, Illingworth B, Pearson CM, Guillory RJ, Seraydarian K. A functional disorder of muscle associated with the absence of phosphorylase. Proc Natl Acad Sci U S A. 1959;45(6):791–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Quinlivan R, Buckley J, James M, Twist A, Ball S, Duno M, et al. McArdle disease: a clinical review. J Neurol Neurosurg Psychiatry. 2010;81(11):1182–8.

    Article  CAS  PubMed  Google Scholar 

  107. Raben N, Sherman JB. Mutations in muscle phosphofructokinase gene. Hum Mutat. 1995;6(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  108. Maekawa M, Kanda S, Sudo K, Kanno T. Estimation of the gene frequency of lactate dehydrogenase subunit deficiencies. Am J Hum Genet. 1984;36(6):1204–14.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elaine C. Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, E.C., Bowie, J.S., Fiol, A.P., Huggins, R.A. (2020). Molecular Aspects of Thermal Tolerance and Exertional Heat Illness Susceptibility. In: Adams, W., Jardine, J. (eds) Exertional Heat Illness. Springer, Cham. https://doi.org/10.1007/978-3-030-27805-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27805-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27804-5

  • Online ISBN: 978-3-030-27805-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics