Skip to main content

Representing and Reasoning About Precise and Imprecise Time Points and Intervals in Semantic Web: Dealing with Dates and Time Clocks

  • Conference paper
  • First Online:
Database and Expert Systems Applications (DEXA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11707))

Included in the following conference series:

Abstract

Temporal data may be precise or imprecise. Representing and reasoning about these kinds of data in ontology still needs to be addressed. A significant number of approaches exist. However, they handle only precise temporal data and lack imprecise ones. In this paper, we propose a crisp-based approach for representing and reasoning about temporal data in term of quantitative (i.e., time points that can be dates and clocks, and time intervals) as well as qualitative relations (e.g., “before”) in ontology. It aims to support not only precise time points and intervals, but also imprecise ones e.g., “The journey starts by the beginning of June and ends by mid-June”. It relies only on crisp exiting Semantic Web standards and it is modeled in crisp ontology. Our approach is based on three blocks. (i) We extend the 4D-fluents approach with new crisp ontological components to represent the mentioned precise and imprecise temporal data. (ii) We extend the Allen’s interval algebra to reason about imprecise time intervals. Compared to related work, our extension is entirely based on crisp set theory. The resulting interval relations preserve many of the desirable properties of the original algebra. We adapt these relations to allow relating a time interval and a time point, and two time points; where time points and intervals may be both precise or both imprecise. All proposed relations can be used for temporal reasoning by means of transitivity tables. (iii) We propose an OWL 2 ontology based on our extensions. It proposes a set of SWRL rules to infer the proposed qualitative temporal relations. A prototype based on this ontology is implemented. We apply our approach to the Travel ontology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.w3.org/TR/owl-time/.

  2. 2.

    https://cedric.cnam.fr/~hamdif/upload/DEXA19/Transitivity_Tables.pdf.

  3. 3.

    http://cedric.cnam.fr/isid/ontologies/files/CrispTimeOnto.html.

  4. 4.

    https://jena.apache.org/.

  5. 5.

    http://www.derivo.de/en/resources/sparql-dl-api.html.

  6. 6.

    https://protege.stanford.edu/junitOntologies/testset/travel.owl.

References

  1. Allen, J.: Maintaining knowledge about temporal intervals. Commun. ACM 26, 832–843 (1983)

    Article  Google Scholar 

  2. Anagnostopoulos, E., Batsakis, S., Petrakis, E.: CHRONOS: a reasoning engine for qualitative temporal information in OWL. Procedia Comput. Sci. 22, 70–77 (2013)

    Article  Google Scholar 

  3. Artale, A., Franconi, E.: A survey of temporal extensions of description logics. Ann. Math. Artif. Intell. 30, 70–77 (2000)

    Google Scholar 

  4. Badaloni, S., Giacomin, M.: The algebra IAfuz: a framework for qualitative fuzzy temporal reasoning. Artif. Intell. 170(10), 872–908 (2006)

    Google Scholar 

  5. Batsakis, S., Petrakis, E.G.M.: SOWL: a framework for handling spatio-temporal information in OWL 2.0. In: Bassiliades, N., Governatori, G., Paschke, A. (eds) Rule-Based Reasoning, Programming, and Applications. RuleML 2011. LNCS, vol. 6826, pp. 242–249. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22546-8_19

    Chapter  Google Scholar 

  6. Buneman, P., Kostylev, E.: Annotation algebras for RDFS. In: Workshop on the Role of Semantic Web in Provenance Management (2010)

    Google Scholar 

  7. Dubois, D., Prade, H.: Processing fuzzy temporal knowledge. IEEE Trans. Syst. Man Cybern. 19(4), 729–744 (1989)

    Article  MathSciNet  Google Scholar 

  8. Ermolayev, V., et al.: An agent-oriented model of a dynamic engineering design process. In: Kolp, M., Bresciani, P., Henderson-Sellers, B., Winikoff, M. (eds.) AOIS -2005. LNCS (LNAI), vol. 3529, pp. 168–183. Springer, Heidelberg (2006). https://doi.org/10.1007/11916291_12

    Chapter  Google Scholar 

  9. Freksa, C.: Temporal reasoning based on semi-intervals. Artif. Intell. 54, 199–227 (1992)

    Article  MathSciNet  Google Scholar 

  10. Gammoudi, A., Hadjali, A.: Fuzz-TIME: an intelligent system for managing fuzzy temporal information. Intell. Comput. Cybern. 10, 200–222 (2017)

    Article  Google Scholar 

  11. Ghorbel, F., Hamdi, F., Métais, E., Ellouze, N., Gargouri, F.: A fuzzy-based approach for representing and reasoning on imprecise time intervals in fuzzy-owl 2 ontology. In: Silberztein, M., Atigui, F., Kornyshova, E., Métais, E., Meziane, F. (eds.) NLDB 2018. LNCS, vol. 10859, pp. 167–178. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91947-8_17

    Chapter  Google Scholar 

  12. Gutierrez, C., Hurtado, C., Vaisman, A.: Temporal RDF. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 93–107. Springer, Heidelberg (2005). https://doi.org/10.1007/11431053_7

    Chapter  Google Scholar 

  13. Harbelot, B.A.: Continuum: a spatiotemporal data model to represent and qualify filiation relationships. In: ACM SIGSPATIAL International Workshop, pp. 76–85 (2013)

    Google Scholar 

  14. Herradi, N.: A Semantic Representation of Time Intervals in OWL2. KEOD, pp. 1–8 (2017)

    Google Scholar 

  15. Hurtado, C., Vaisman, A.: Reasoning with temporal constraints in RDF. In: Alferes, J.J., Bailey, J., May, W., Schwertel, U. (eds.) PPSWR 2006. LNCS, vol. 4187, pp. 164–178. Springer, Heidelberg (2006). https://doi.org/10.1007/11853107_12

    Chapter  Google Scholar 

  16. Kim, S.-K., Song, M.-Y., Kim, C., Yea, S.-J., Jang, H.C., Lee, K.-C.: Temporal ontology language for representing and reasoning interval-based temporal knowledge. In: Domingue, J., Anutariya, C. (eds.) ASWC 2008. LNCS, vol. 5367, pp. 31–45. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89704-0_3

    Chapter  Google Scholar 

  17. Klein, M.C.: Ontology versioning on the semantic web. In: Semantic Web Working Symposium, Stanford University, pp. 75–91. California (2001)

    Google Scholar 

  18. Lutz, C.: Description logics with concrete domains. In: Advances in Modal Logic, pp. 265–296 (2003)

    Google Scholar 

  19. Nagypál, G., Motik, B.: A fuzzy model for representing uncertain, subjective, and vague temporal knowledge in ontologies. In: Meersman, R., Tari, Z., Schmidt, D.C. (eds.) OTM 2003. LNCS, vol. 2888, pp. 906–923. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39964-3_57

    Chapter  Google Scholar 

  20. Noy, N.R.: Defining N-Ary Relations on the Semantic-Web. W3C Working Group (2006)

    Google Scholar 

  21. O’Connor, M.J., Das, A.K.: A method for representing and querying temporal information in OWL. In: Fred, A., Filipe, J., Gamboa, H. (eds.) BIOSTEC 2010. CCIS, vol. 127, pp. 97–110. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18472-7_8

    Chapter  Google Scholar 

  22. Sadeghi, K.M.: Uncertain interval algebra via fuzzy/probabilistic modeling. In: IEEE International Conference on Fuzzy Systems, pp. 591–598 (2014)

    Google Scholar 

  23. Tappolet, J., Bernstein, A.: Applied temporal RDF: efficient temporal querying of RDF data with SPARQL. In: Aroyo, L., et al. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 308–322. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02121-3_25

    Chapter  Google Scholar 

  24. Vilain, M.B.: Constraint propagation algorithms for temporal reasoning. In: National Conference on Artificial Intelligence, pp. 377–382. Philadelphia (1986)

    Google Scholar 

  25. Welty, C., Fikes, R.: A reusable ontology for fluents in OWL. In: FOIS, pp. 226–336 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nassira Achich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Achich, N., Ghorbel, F., Hamdi, F., Metais, E., Gargouri, F. (2019). Representing and Reasoning About Precise and Imprecise Time Points and Intervals in Semantic Web: Dealing with Dates and Time Clocks. In: Hartmann, S., Küng, J., Chakravarthy, S., Anderst-Kotsis, G., Tjoa, A., Khalil, I. (eds) Database and Expert Systems Applications. DEXA 2019. Lecture Notes in Computer Science(), vol 11707. Springer, Cham. https://doi.org/10.1007/978-3-030-27618-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27618-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27617-1

  • Online ISBN: 978-3-030-27618-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics