Skip to main content

PIMP My Many-Core: Pipeline-Integrated Message Passing

  • Conference paper
  • First Online:
Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11733))

Included in the following conference series:

Abstract

To improve the scalability, several many-core architectures use message passing instead of shared memory accesses for communication. Unfortunately, Direct Memory Access (DMA) transfers in a shared address space are usually used to emulate message passing, which entails a lot of overhead and thwarts the advantages of message passing.

Recently proposed register-level message passing alternatives use special instructions to send the contents of a single register to another core. The reduced communication overhead and architectural simplicity lead to good many-core scalability. After investigating several other approaches in terms of hardware complexity and throughput overhead, we recommend a small instruction set extension to enable register-level message passing at minimal hardware costs and describe its integration into a classical five stage RISC-V pipeline.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The TOP500 List November 2018. https://www.top500.org/lists/2018/11/

  2. Bailey, D.H., et al.: The NAS parallel benchmarks. Int. J. High Perform. Comput. Appl. 5(3), 63–73 (1991)

    Google Scholar 

  3. Bell, S., et al.: Tile64-processor: a 64-core SoC with mesh interconnect. In: International Solid-State Circuits Conference (ISSC) (2008)

    Google Scholar 

  4. de Dinechin, B.D., et al.: A distributed run-time environment for the kalray MPPA-256 integrated manycore. Proc. Comput. Sci. 18, 1654–1663 (2013)

    Article  Google Scholar 

  5. Duller, A., et al.: Picoarray technology: the tool’s story. In: DATE (2005)

    Google Scholar 

  6. Goossens, K., et al.: Virtual execution platforms for mixed-time-criticality systems: the CompSOC architecture. ACM SIGBED Rev. 10(3), 23–34 (2013)

    Article  Google Scholar 

  7. Kumar, R., et al.: The case for message passing on many-core chips. Technical report UILU-ENG-10-2203 (CRHC 10–01), University of Illinois at Urbana Champaign (2010)

    Google Scholar 

  8. Lee, Y., et al.: A 45nm 1.3 GHz 16.7 double-precision GFLOPS/W RISC-V processor with vector accelerators. In: ESSCIRC, pp. 199–202 (2014)

    Google Scholar 

  9. Mattson, T.G., et al.: The 48-core SCC processor: the programmer’s view. In: High Performance Computing, Networking, Storage and Analysis (SC) (2010)

    Google Scholar 

  10. Message Passing Interface Forum: University of Tennessee: Message-Passing Interface Standard, Version 3.0 (Sep 2012)

    Google Scholar 

  11. Mische, J., Frieb, M., Stegmeier, A., Ungerer, T.: Reduced complexity many-core: timing predictability due to message-passing. In: Knoop, J., Karl, W., Schulz, M., Inoue, K., Pionteck, T. (eds.) ARCS 2017. LNCS, vol. 10172, pp. 139–151. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54999-6_11

    Chapter  Google Scholar 

  12. Sodani, A., et al.: Knights landing: second-generation intel xeon phi product. IEEE Micro 36(2), 34–46 (2016)

    Article  Google Scholar 

  13. Sørensen, R.B., et al.: Message passing on a time-predictable multicore processor. In: Symposium on Real-time Distributed Computing, pp. 51–59 (2015)

    Google Scholar 

  14. Taylor, M.B., et al.: The raw microprocessor: a computational fabric for software circuits and general-purpose programs. IEEE Micro 22(2), 25–35 (2002)

    Article  Google Scholar 

  15. Waterman, A., Asanović, K.: The RISC-V instruction set manual, volume I: user-level ISA, document version 2.2. RISC-V Foundation, May 2017

    Google Scholar 

  16. der Wijngaart, V., et al.: Light-weight communications on Intel’s single-chip cloud computer processor. ACM SIGOPS Oper. Syst. Rev. 45(1), 73–83 (2011)

    Article  Google Scholar 

  17. Zheng, F., et al.: Cooperative computing techniques for a deeply fused and heterogeneous many-core processor architecture. J. Comput. Sci. Technol. 30(1), 145–162 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Mische .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mische, J., Frieb, M., Stegmeier, A., Ungerer, T. (2019). PIMP My Many-Core: Pipeline-Integrated Message Passing. In: Pnevmatikatos, D., Pelcat, M., Jung, M. (eds) Embedded Computer Systems: Architectures, Modeling, and Simulation. SAMOS 2019. Lecture Notes in Computer Science(), vol 11733. Springer, Cham. https://doi.org/10.1007/978-3-030-27562-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27562-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27561-7

  • Online ISBN: 978-3-030-27562-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics