Skip to main content

Seed Osmolyte Priming and Abiotic Stress Tolerance

  • Chapter
  • First Online:
Osmoprotectant-Mediated Abiotic Stress Tolerance in Plants

Abstract

Seed priming has been used to achieve enhanced and uniform emergence of many horticultural crops. Controlled seed rehydration induced by priming triggers metabolic processes associated with early stages of germination. Compounds employed in priming can be large and charged, such as hormones or acidic molecules, or small and neutral osmolytes such as sugars and polyols. Priming with water, osmolytes such as proline or mannitol, hormones such as gibberellin or brassinosteroids, or biological solutions such as salicylic acid or essential oils can enhance seedling or mature-plant tolerance to abiotic stresses. The treatment effectiveness may depend on methodology, crop, and/or seed structure. Beneficial effects of priming for abiotic stress tolerance are often associated with enhanced antioxidant activity in the seedling, as expressed by increased enzyme activity and/or concentrations of protective compounds. Although the beneficial effects of seed priming can be significant, they are not observed consistently. This may be related to the duration of the protective action of priming. Protection afforded by priming is often more effective if stress is present at the time of sowing, germination, or emergence. Delaying sowing after priming can result in impaired germination, while protective effects of the treatment do not always persist with plant maturation. Future research on seed priming for abiotic stress resistance should emphasize development of treatments that are effective even after treated seeds are stored, persist during most or all of plant maturation, and behave similarly in different cultivars of the same crop and ideally in a range of crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Amooaghaie R (2011) The effect of hydro and osmopriming on alfalfa seed germination and antioxidant defenses under salt stress. Afr J Biotechnol 10:6269–6275

    Article  CAS  Google Scholar 

  • Arteca RN (2013) Plant growth substances: principles and applications. Springer Science & Business Media

    Google Scholar 

  • Ashraf M, Ali Q (2008) Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (Brassica napus L.). Environ Exp Bot 63:266–273

    Article  CAS  Google Scholar 

  • Bailly C, Benamar A, Corbineau F, Côme D (2000) Antioxidant systems in sunflower (Helianthus annuus L.) seeds as affected by priming. Seed Sci Res 10:35–42

    Article  CAS  Google Scholar 

  • Bailly C (2004) Active oxygen species and antioxidants in seed biology. Seed Sci Res 14:93–107

    Article  CAS  Google Scholar 

  • Baier M, Bittner A, Prescher A, van Buer J (2019) Preparing plants for improved cold tolerance by priming. Plant Cell Environ 42:782–800

    Article  CAS  PubMed  Google Scholar 

  • Bajwa AA, Farooq M, Nawaz A (2018) Seed priming with sorghum extracts and benzyl aminopurine improves the tolerance against salt stress in wheat (Triticum aestivum L.). Physiol Mol Biol Plants 24:239–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Bast A, Haenen GR (2002) The toxicity of antioxidants and their metabolites. Environ Toxicol Pharmacol 1:251–258

    Article  Google Scholar 

  • Bernstein N, Shoresh M, Xu Y, Huang B (2010) Involvement of the plant antioxidative response in the differential growth sensitivity to salinity of leaves vs roots during cell development. Free Radic Biol Med 49:1161–1171

    Article  CAS  PubMed  Google Scholar 

  • Bewley JD, Bradford K, Hilhorst H (2012) Seeds: physiology of development, germination and dormancy. Springer Science & Business Media

    Google Scholar 

  • Boughton BA, Thinagaran D, Sarabia D, Bacic A, Roessner U (2016) Mass spectrometry imaging for plant biology: a review. Phytochem Rev 15:445–488

    Article  CAS  PubMed  Google Scholar 

  • Bujalski W, Nienow AW (1991) Large-scale osmotic priming of onion seeds: a comparison of different strategies for oxygenation. Sci Hortic 46:13–24

    Article  Google Scholar 

  • Catusse J, Meinhard J, Job C, Strub JM, Fischer U, Pestsova E, Job D (2011) Proteomics reveals potential biomarkers of seed vigor in sugarbeet. Proteomics 11:1569–1580

    Article  CAS  PubMed  Google Scholar 

  • Cayuela E, Pérez-Alfocea F, Caro M, Bolarin MC (1996) Priming of seeds with NaCl induces physiological changes in tomato plants grown under salt stress. Physiol Plant 96:231–236

    Article  CAS  Google Scholar 

  • Chen K, Arora R (2013) Priming memory invokes seed stress tolerance. Environ Exp Bot 94:33–45

    Article  CAS  Google Scholar 

  • Cheng B, Li Z, Liang L, Cao Y, Zeng W, Zhang X, Peng Y (2018) The γ-aminobutyric acid (GABA) alleviates salt stress damage during seeds germination of white clover associated with Na+/K+ transportation, Dehydrins accumulation, and stress-related genes expression in white clover. Int J Mol Sci 19:2520

    Article  PubMed Central  CAS  Google Scholar 

  • Cortez-Baheza E, Peraza-Luna F, Hernandez-Alvarez MI, Aguado-Santacruz GA, Torres-Pacheco I, González-Chavira MM, Guevara-Gonzalez RG (2007) Profiling the transcriptome in Capsicum annuum L. seeds during osmopriming. Am J Plant Physiol 2:99–106

    Article  CAS  Google Scholar 

  • Dawood MG (2018) Stimulating plant tolerance against abiotic stress through seed priming. In: Advances in seed priming. Springer, Singapore, pp 147–183

    Chapter  Google Scholar 

  • Dawood MG, El-Awadi ME (2015) Alleviation of salinity stress on Vicia faba L. plants via seed priming with melatonin. Acta Biológica Colombiana 20:223–235

    CAS  Google Scholar 

  • Deivanai S, Xavier R, Vinod V, Timalata K, Lim OF (2011) Role of exogenous proline in ameliorating salt stress at early stage in two rice cultivars. J Stress Physiol Biochem 7:157–174

    Google Scholar 

  • De Azeredo GA, Stamford TLM, Nunes PC, Neto NJG, De Oliveira MEG, De Souza EL (2011) Combined application of essential oils from Origanum vulgare L. and Rosmarinus officinalis L. to inhibit bacteria and autochthonous microflora associated with minimally processed vegetables. Food Res Int 44:1541–1548

    Article  CAS  Google Scholar 

  • Ellouzi H, Sghayar S, Abdelly C (2017) H2O2 seed priming improves tolerance to salinity; drought and their combined effect more than mannitol in Cakile maritima when compared to Eutrema salsugineum. J Plant Physiol 210:38–50

    Article  CAS  PubMed  Google Scholar 

  • El-Araby MM, Hegazi AZ (2004) Responses of tomato seeds to hydro-and osmo-priming, and possible relations of some antioxidant enzymes and endogenous polyamine fractions. Egypt J Biol 6:81–93

    Google Scholar 

  • Fariduddin Q, Hayat S, Ahmad A (2003) Salicylic acid influences net photosynthetic rate, carboxylation efficiency, nitrate reductase activity, and seed yield in Brassica juncea. Photosynthetica 41:281–284

    Article  CAS  Google Scholar 

  • Farooq M, Basra SMA, Hafeez K (2006) Seed invigoration by osmohardening in fine and course rice. Seed Sci Technol 34:181–186

    Article  Google Scholar 

  • Farooq M, Basra SMA, Wahid A, Ahmad N, Saleem BA (2009) Improving the drought tolerance in rice (Oryza sativa L.) by exogenous application of salicylic acid. J Agron Crop Sci 195:237–246

    Article  CAS  Google Scholar 

  • Farooq M, Basra SMA, Wahid A, Cheema ZA, Cheema MA, Khaliq A (2008) Physiological role of exogenously applied glycinebetaine to improve drought tolerance in fine grain aromatic rice (Oryza sativa L.). J Agron Crop Sci 194:325–333

    Article  CAS  Google Scholar 

  • Farooq M, Habib M, Rehman A, Wahid A, Munir R (2011) Employing aqueous allelopathic extracts of sunflower in improving salinity tolerance of rice. J Agric Soc Sci 7:75–80

    Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7:1456–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussain M, Farooq M, Lee DJ (2017) Evaluating the role of seed priming in improving drought tolerance of pigmented and non-pigmented rice. J Agron Crop Sci 203:269–276

    Article  CAS  Google Scholar 

  • Iqbal M, Ashraf M (2005) Changes in growth, photosynthetic capacity and ionic relations in spring wheat (Triticum aestivum L.) due to pre-sowing seed treatment with polyamines. Plant Growth Regul 46:19–30

    Article  CAS  Google Scholar 

  • Jaspers P, Kangasjärvi J (2010) Reactive oxygen species in abiotic stress signaling. Physiol Plant 138:405–413

    Article  CAS  PubMed  Google Scholar 

  • Jisha KC, Puthur JT (2016a) Seed priming with BABA (β-amino butyric acid): a cost-effective method of abiotic stress tolerance in Vigna radiata (L.) Wilczek. Protoplasma 253:277–289

    Article  CAS  PubMed  Google Scholar 

  • Jisha KC, Puthur JT (2016b) Seed priming with beta-amino butyric acid improves abiotic stress tolerance in rice seedlings. Rice Sci 23:242–254

    Article  Google Scholar 

  • Kaur S, Gupta AK, Kaur N (2005) Seed priming increases crop yield possibly by modulating enzymes of sucrose metabolism in chickpea. J Agron Crop Sci 191:81–87

    Article  Google Scholar 

  • Kazemi M (2013) Priming with 5-SSA, glutamine and thyme oil improves the emergence and early seedling growth in pea (Pisum sativum L.). bulletin of environment, pharmacology. Life Sci 3:21–27

    Google Scholar 

  • Klein JD, Firmansyah A, Panga N, Abu-Aklin W, Dekalo-Keren M, Gefen T, Kohen R, Raz Shalev Y, Dudai N, Mazor L (2017) Seed treatments with essential oils protect radish seedlings against drought. AIMS Agriculture and Food 2:345–353

    Article  Google Scholar 

  • Krishnan S, Laskowski K, Shukla V, Merewitz EB (2013) Mitigation of drought stress damage by exogenous application of a non-protein amino acid γ–aminobutyric acid on perennial ryegrass. J Am Soc Hortic Sci 138:358–366

    Article  Google Scholar 

  • Kubala S, Garnczarska M, Wojtyla Ł, Clippe A, Kosmala A, Żmieńko A, Quinet M (2015) Deciphering priming-induced improvement of rapeseed (Brassica napus L.) germination through an integrated transcriptomic and proteomic approach. Plant Sci 231:94–113

    Article  CAS  PubMed  Google Scholar 

  • Latif M, Akram NA, Ashraf M (2016) Regulation of some biochemical attributes in drought-stressed cauliflower (Brassica oleracea L.) by seed pre-treatment with ascorbic acid. J Hortic Sci Biotechnol 91:129–137

    Article  CAS  Google Scholar 

  • Lei YB, Song SQ, Fu JR (2005) Possible involvement of anti-oxidant enzymes in the cross-tolerance of the germination/growth of wheat seeds to salinity and heat stress. J Integr Plant Biol 47:1211–1219

    Article  CAS  Google Scholar 

  • Li Z, Peng Y, Zhang XQ, Ma X, Huang LK, Yan YH (2014) Exogenous spermidine improves seed germination of white clover under water stress via involvement in starch metabolism, antioxidant defenses and relevant gene expression. Molecules 19:18003–18024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martino LD, Mancini E, Almeida LFRD, Feo VD (2010) The antigerminative activity of twenty-seven monoterpenes. Molecules 15:6630–6637

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Murungu FS, Chiduza C, Nyamugafata P, Clark LJ, Whalley WR, Finch-Savage WE (2004) Effects of ‘on-farm seed priming’on consecutive daily sowing occasions on the emergence and growth of maize in semi-arid Zimbabwe. Field Crop Res 89:49–57

    Article  Google Scholar 

  • Ndhlala A, Moyo M, Van Staden J (2010) Natural antioxidants: fascinating or mythical biomolecules? Molecules 15:6905–6930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nouman W, Siddiqui MT, Basra SMA, Afzal I, Rehman HU (2012) Enhancement of emergence potential and stand establishment of Moringa oleifera Lam. by seed priming. Turk J Agric For 36:227–235

    Google Scholar 

  • Nguyen HC, Lin KH, Ho SL, Chiang CM, Yang CM (2018) Enhancing the abiotic stress tolerance of plants: from chemical treatment to biotechnological approaches. Physiol Plant 164:452–466

    Article  CAS  PubMed  Google Scholar 

  • Paparella S, Araújo SS, Rossi G, Wijayasinghe M, Carbonera D, Balestrazzi A (2015) Seed priming: state of the art and new perspectives. Plant Cell Rep 34:1281–1293

    Article  CAS  PubMed  Google Scholar 

  • Poonam S, Kaur H, Geetika S (2013) Effect of jasmonic acid on photosynthetic pigments and stress markers in Cajanus cajan (L.) Millsp. seedlings under copper stress. Am J Plant Sci 4:817

    Article  CAS  Google Scholar 

  • Posmyk MM, Janas KM (2007) Effects of seed hydropriming in presence of exogenous proline on chilling injury limitation in Vigna radiata L. seedlings. Acta Physiol Plant 29:509–517

    Article  CAS  Google Scholar 

  • Posmyk MM, Kuran H, Marciniak K, Janas KM (2008) Presowing seed treatment with melatonin protects red cabbage seedlings against toxic copper ion concentrations. J Pineal Res 45:24–31

    Article  CAS  PubMed  Google Scholar 

  • Rademacher W (2015) Plant growth regulators: backgrounds and uses in plant production. J Plant Growth Regul 34:845–872

    Article  CAS  Google Scholar 

  • Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202

    Article  CAS  Google Scholar 

  • Rosa M, Prado C, Podazza G, Interdonato R, González JA, Hilal M, Prado FE (2009) Soluble sugars: metabolism, sensing and abiotic stress: a complex network in the life of plants. Plant Signal Behav 4:388–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taiz L, Zeiger E (2006) Plant physiology, vol 25, 5th edn. Sinauer Associates, Sunderland, pp 591–623

    Google Scholar 

  • Savvides A, Ali S, Tester M, Fotopoulos V (2016) Chemical priming of plants against multiple abiotic stresses: mission possible? Trends Plant Sci 21:329–340

    Article  CAS  PubMed  Google Scholar 

  • Shafiq S, Akram NA, Ashraf M (2015) Does exogenously-applied trehalose alter oxidative defense system in the edible part of radish (Raphanus sativus L.) under water-deficit conditions? Sci Hortic 185:68–75

    Article  CAS  Google Scholar 

  • Sheteiwy M, Shen H, Xu J, Guan Y, Song W, Hu J (2017) Seed polyamines metabolism induced by seed priming with spermidine and 5-aminolevulinic acid for chilling tolerance improvement in rice (Oryza sativa L.) seedlings. Environ Exp Bot 137:58–72

    Article  CAS  Google Scholar 

  • Tardieu F, Cabrera-Bosquet L, Pridmore T, Bennett M (2017) Plant phenomics, from sensors to knowledge. Curr Biol 27:R770–R783

    Article  CAS  PubMed  Google Scholar 

  • Wang WQ, Chen Q, Hussain S, Mei JH, Dong HL, Peng SB, Nie LX (2016) Pre-sowing seed treatments in direct-seeded early rice: consequences for emergence, seedling growth and associated metabolic events under chilling stress. Sci Rep 6:19637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright B, Rowse H, Whipps JM (2003) Microbial population dynamics on seeds during drum and steeping priming. Plant Soil 255:631–640

    Article  CAS  Google Scholar 

  • Western TL (2012) The sticky tale of seed coat mucilages: production, genetics, and role in seed germination and dispersal. Seed Sci Res 22:1–25

    Article  CAS  Google Scholar 

  • Yang D, Wang N, Yan X, Shi J, Zhang M, Wang Z, Yuan H (2014) Microencapsulation of seed-coating tebuconazole and its effects on physiology and biochemistry of maize seedlings. Colloids Surf B: Biointerfaces 114:241–246

    Article  CAS  PubMed  Google Scholar 

  • Ye X, Ling T, Xue Y, Xu C, Zhou W, Hu L, Chen J, Shi Z (2016) Thymol mitigates cadmium stress by regulating glutathione levels and reactive oxygen species homeostasis in tobacco seedlings. Molecules 21:1339

    Article  PubMed Central  CAS  Google Scholar 

  • Zeid IM (2009) Trehalose as osmoprotectant for maize under salinity-induced stress. Res J Agric Biol Sci 5:613–622

    CAS  Google Scholar 

  • Zhang X, Lu G, Long W, Zou X, Li F, Nishio T (2014) Recent progress in drought and salt tolerance studies in Brassica crops. Breed Sci 64:60–73

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Q, Rue K (2012) Glycinebetaine seed priming improved osmotic and salinity tolerance in turfgrasses. HortScience 47:1171–1174

    Article  CAS  Google Scholar 

  • Zheng M, Tao Y, Hussain S, Jiang Q, Peng S, Huang J, Nie L (2016) Seed priming in dry direct-seeded rice: consequences for emergence, seedling growth and associated metabolic events under drought stress. Plant Growth Regul 78:167–178

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua D. Klein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ginzburg, D., Klein, J.D. (2019). Seed Osmolyte Priming and Abiotic Stress Tolerance. In: Hossain, M., Kumar, V., Burritt, D., Fujita, M., Mäkelä, P. (eds) Osmoprotectant-Mediated Abiotic Stress Tolerance in Plants. Springer, Cham. https://doi.org/10.1007/978-3-030-27423-8_12

Download citation

Publish with us

Policies and ethics