Skip to main content

A Mini Review: Moving iPSC-Derived Retinal Subtypes Forward for Clinical Applications for Retinal Degenerative Diseases

  • Conference paper
  • First Online:
Retinal Degenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1185))

Abstract

Patient-derived human-induced pluripotent stem cells (iPSCs) have been critical in advancing our understanding of the underlying mechanisms of numerous retinal disorders. Many of these retinal disorders have no effective treatment and result in severe visual impairment and even blindness. Among the retinal degenerative diseases modeled by iPSCs are age-related macular degeneration (AMD), glaucoma, Leber congenital amaurosis (LCA), retinitis pigmentosa (RP), and autosomal dominant retinitis pigmentosa (adRP). In addition to studying retinal disease ontogenesis and pathology, hiPSCs have clinical and pharmacological applications, such as developing drug screening and gene therapy approaches and new cell-based clinical treatments. Recent studies have primarily focused on three retinal cell fates – retinal pigmented epithelium cells (RPE), retinal ganglion cells (RGCs), and photoreceptor cells – and have demonstrated that hiPSCs have great potential for increasing our knowledge of and developing treatments for retinal degenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arno G, Agrawal SA, Eblimit A, Bellingham J, Xu M, Wang F et al (2016) Mutations in REEP6 cause autosomal-recessive retinitis pigmentosa. Am J Hum Genet 99(6):1305–1315

    Article  CAS  Google Scholar 

  • Duong TT, Vasireddy V, Ramachandran P, Herrera PS, Leo L, Merkel C et al (2018) Use of induced pluripotent stem cell models to probe the pathogenesis of Choroideremia and to develop a potential treatment. Stem Cell Res 27:140–150

    Article  CAS  Google Scholar 

  • Gagliardi G, Ben M'Barek K, Chaffiol A, Slembrouck-Brec A, Conart J-B, Nanteau C et al (2018 Sep 11) Characterization and transplantation of CD73-positive photoreceptors isolated from human iPSC-derived retinal organoids. Stem Cell Reports 11(3):665–680

    Article  CAS  Google Scholar 

  • Galloway CA, Dalvi S, Hung SSC, MacDonald LA, Latchney LR, Wong RCB et al (2017) Drusen in patient-derived hiPSC-RPE models of macular dystrophies. Proc Natl Acad Sci U S A 114(39):E8214–E8223

    Article  CAS  Google Scholar 

  • Jin Z-B, Okamoto S, Xiang P, Takahashi M (2012) Integration-free induced pluripotent stem cells derived from retinitis pigmentosa patient for disease modeling. Stem Cells Transl Med 1(6):503–509

    Article  CAS  Google Scholar 

  • Kashani AH, Lebkowski JS, Rahhal FM, Avery RL, Salehi-Had H, Dang W et al (2018) A bioengineered retinal pigment epithelial monolayer for advanced, dry age-related macular degeneration. Sci Transl Med 10(435):eaao4097

    Article  Google Scholar 

  • Langer KB, Ohlemacher SK, Phillips MJ, Fligor CM, Jiang P, Gamm DM et al (2018) Retinal ganglion cell diversity and subtype specification from human pluripotent stem cells. Stem Cell Reports 10:1282

    Article  CAS  Google Scholar 

  • Leach LL, Croze RH, Hu Q, Nadar VP, Clevenger TN, Pennington BO et al (2016) Induced pluripotent stem cell-derived retinal pigmented epithelium: a comparative study between cell lines and differentiation methods. J Ocul Pharmacol Ther 32(5):317–330

    Article  CAS  Google Scholar 

  • Li Y, Wu W-H, Hsu C-W, Nguyen HV, Tsai Y-T, Chan L et al (2014) Gene therapy in patient-specific stem cell lines and a preclinical model of retinitis pigmentosa with membrane frizzled-related protein defects. Mol Ther 22(9):1688–1697

    Article  CAS  Google Scholar 

  • Lukovic D, Castro AA, Delgado ABG, de los Angeles Martín Bernal M, Pelaez NL, Lloret AD et al (2015) Human iPSC derived disease model of MERTK-associated retinitis pigmentosa. Sci Rep 5:12910

    Article  CAS  Google Scholar 

  • Mandai M, Watanabe A, Kurimoto Y et al (2017) Autologous Induced Stem-Cell-Derived Retinal Cells for Macular Degeneration. N Engl J Med 376(11):1038–1046

    Google Scholar 

  • Ohlemacher SK, Sridhar A, Xiao Y, Hochstetler AE, Sarfarazi M, Cummins TR et al (2016) Stepwise differentiation of retinal ganglion cells from human pluripotent stem cells enables analysis of glaucomatous neurodegeneration. Stem Cells 34(6):1553–1562

    Article  CAS  Google Scholar 

  • Oswald J, Baranov P (2018) Regenerative medicine in the retina: from stem cells to cell replacement therapy. Ther Adv Ophthalmol 10:2515841418774433

    PubMed  PubMed Central  Google Scholar 

  • Parfitt DA, Lane A, Ramsden CM, Carr A-JF, Munro PM, Jovanovic K et al (2016) Identification and correction of mechanisms underlying inherited blindness in human iPSC-derived optic cups. Cell Stem Cell 18(6):769–781

    Article  CAS  Google Scholar 

  • Russell S, Bennett J, Wellman JA, Chung DC, Yu Z-F, Tillman A et al (2017) Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet 390(10097):849–860

    Article  CAS  Google Scholar 

  • Schwarz N, Carr A-J, Lane A, Moeller F, Chen LL, Aguilà M et al (2015) Translational read-through of the RP2 Arg120stop mutation in patient iPSC-derived retinal pigment epithelium cells. Hum Mol Genet 24(4):972–986

    Article  CAS  Google Scholar 

  • Schwarz N, Lane A, Jovanovic K, Parfitt DA, Aguilà M, Thompson CL et al (2017) Arl3 and RP2 regulate the trafficking of ciliary tip kinesins. Hum Mol Genet 26(13):2480–2492

    Article  CAS  Google Scholar 

  • Shimada H, Lu Q, Insinna-Kettenhofen C, Nagashima K, English MA, Semler EM et al (2017) In vitro modeling using ciliopathy-patient-derived cells reveals distinct cilia dysfunctions caused by CEP290 mutations. Cell Rep 20(2):384–396

    Article  CAS  Google Scholar 

  • Sluch VM, Chamling X, Liu MM, Berlinicke CA, Cheng J, Mitchell KL et al (2017) Enhanced stem cell differentiation and immunopurification of genome engineered human retinal ganglion cells. Stem Cells Transl Med 6(11):1972–1986

    Article  CAS  Google Scholar 

  • Teotia P, Chopra DA, Dravid SM, Van Hook MJ, Qiu F, Morrison J et al (2017a) Generation of functional human retinal ganglion cells with target specificity from pluripotent stem cells by chemically defined recapitulation of developmental mechanism. Stem Cells 35(3):572–585

    Article  CAS  Google Scholar 

  • Teotia P, Van Hook MJ, Wichman CS, Allingham RR, Hauser MA, Ahmad I (2017b) Modeling Glaucoma: retinal ganglion cells generated from induced pluripotent stem cells of patients with SIX6 risk allele show developmental abnormalities. Stem Cells 35(11):2239–2252

    Article  CAS  Google Scholar 

  • Tham Y-C, Li X, Wong TY, Quigley HA, Aung T, Cheng C-Y (2014) Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology 121(11):2081–2090

    Article  Google Scholar 

  • Vasireddy V, Mills JA, Gaddameedi R, Basner-Tschakarjan E, Kohnke M, Black AD et al (2013) AAV-mediated gene therapy for choroideremia: preclinical studies in personalized models. PLoS One 8(5):e61396–e61313

    Article  CAS  Google Scholar 

  • Weed LS, Mills JA (2017) Strategies for retinal cell generation from human pluripotent stem cells. Stem Cell Investig 4(7):65–65

    Article  Google Scholar 

  • Wiley LA, Burnight ER, DeLuca AP, Anfinson KR, Cranston CM, Kaalberg EE et al (2016) cGMP production of patient-specific iPSCs and photoreceptor precursor cells to treat retinal degenerative blindness. Sci Rep 6(1):30742

    Article  CAS  Google Scholar 

  • Yoshida T, Ozawa Y, Suzuki K, Yuki K, Ohyama M, Akamatsu W et al (2014) The use of induced pluripotent stem cells to reveal pathogenic gene mutations and explore treatments for retinitis pigmentosa. Mol Brain 7:45. Bio Med Central. 2014;7(1):45–11.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason A. Mills .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cho, C., Duong, T.T., Mills, J.A. (2019). A Mini Review: Moving iPSC-Derived Retinal Subtypes Forward for Clinical Applications for Retinal Degenerative Diseases. In: Bowes Rickman, C., Grimm, C., Anderson, R., Ash, J., LaVail, M., Hollyfield, J. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 1185. Springer, Cham. https://doi.org/10.1007/978-3-030-27378-1_91

Download citation

Publish with us

Policies and ethics