Skip to main content

Applications of Genomic Technologies in Retinal Degenerative Diseases

  • Conference paper
  • First Online:
Retinal Degenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1185))

Abstract

Next-generation sequencing (NGS)-based technologies are ideal for genomic analyses owing to their cost-effectiveness, unprecedented speed, and accuracy. Acceleration in examining genome, transcriptome, and epigenome has made significant impact in biomedical sciences. This review highlights the applications of high-throughput NGS technologies in improving the molecular understanding of retinal degenerative diseases (RDDs). I focus on NGS-based methods and strategies that are allowing expedited disease gene identifications, improved diagnosis, and deeper understanding of the mechanisms through which genetic variations lead to diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • 1000 Genomes Project Consortium, Auton A, Brooks LD et al (2015) A global reference for human genetic variation. Nature 526:68–74

    Article  Google Scholar 

  • Aldiri I, Xu B, Wang L et al (2017) The dynamic epigenetic landscape of the retina during development, reprogramming, and tumorigenesis. Neuron 94:550–568.e10

    Article  CAS  Google Scholar 

  • Chan JC, Piper DE, Cao Q et al (2009) A proprotein convertase subtilisin/kexin type 9 neutralizing antibody reduces serum cholesterol in mice and nonhuman primates. Proc Natl Acad Sci U S A 106:9820–9825

    Article  CAS  Google Scholar 

  • Ellingford JM, Barton S, Bhaskar S et al (2016) Whole genome sequencing increases molecular diagnostic yield compared with current diagnostic testing for inherited retinal disease. Ophthalmology 123:1143–1150

    Article  Google Scholar 

  • ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74

    Article  Google Scholar 

  • Fritsche LG, Igl W, Bailey JN et al (2016) A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nat Genet 48:134–143

    Article  CAS  Google Scholar 

  • Geerlings MJ, de Jong EK, den Hollander AI (2017) The complement system in age-related macular degeneration: a review of rare genetic variants and implications for personalized treatment. Mol Immunol 84:65–76

    Article  CAS  Google Scholar 

  • Gusev A, Ko A, Shi H et al (2016) Integrative approaches for large-scale transcriptome-wide association studies. Nat Genet 48:245–252

    Article  CAS  Google Scholar 

  • Hoshino A, Ratnapriya R, Brooks MJ et al (2017) Molecular anatomy of the developing human retina. Dev Cell 43:763

    Article  CAS  Google Scholar 

  • International HapMap Consortium (2003) The International HapMap Project. Nature 426:789–796

    Article  Google Scholar 

  • Kolodziejczyk AA, Kim JK, Svensson V et al (2015) The technology and biology of single-cell RNA sequencing. Mol Cell 58:610–620

    Article  CAS  Google Scholar 

  • Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  CAS  Google Scholar 

  • Liu MM, Zack DJ (2013) Alternative splicing and retinal degeneration. Clin Genet 84:142–149

    Article  CAS  Google Scholar 

  • Metzker ML (2010) Sequencing technologies – the next generation. Nat Rev Genet 11:31–46

    Article  CAS  Google Scholar 

  • Mo A, Luo C, Davis FP et al (2016) Epigenomic landscapes of retinal rods and cones. Elife 5:e11613

    Article  Google Scholar 

  • Mortazavi A, Williams BA, McCue K et al (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  CAS  Google Scholar 

  • Neveling K, Collin RW, Gilissen C et al (2012) Next-generation genetic testing for retinitis pigmentosa. Hum Mutat 33:963–972

    Article  CAS  Google Scholar 

  • Nicolae DL, Gamazon E, Zhang W et al (2010) Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genet 6:e1000888

    Article  Google Scholar 

  • O’Sullivan J, Mullaney BG, Bhaskar SS et al (2012) A paradigm shift in the delivery of services for diagnosis of inherited retinal disease. J Med Genet 49:322–326

    Article  Google Scholar 

  • Ratnapriya R, Swaroop A (2013) Genetic architecture of retinal and macular degenerative diseases: the promise and challenges of next-generation sequencing. Genome Med 5:84

    Article  Google Scholar 

  • Roadmap Epigenomics Consortium, Kundaje A, Meuleman W et al (2015) Integrative analysis of 111 reference human epigenomes. Nature 518:317–330

    Article  Google Scholar 

  • Roberts L, Ratnapriya R, du Plessis M et al (2016) Molecular diagnosis of inherited retinal diseases in indigenous African populations by whole-exome sequencing. Invest Ophthalmol Vis Sci 57:6374–6381

    Article  CAS  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467

    Article  CAS  Google Scholar 

  • Stone EM, Andorf JL, Whitmore SS et al (2017) Clinically focused molecular investigation of 1000 consecutive families with inherited retinal disease. Ophthalmology 124:1314–1331

    Article  Google Scholar 

  • Venter JC, Adams MD, Myers EW et al (2001) The sequence of the human genome. Science 291:1304–1351

    Article  CAS  Google Scholar 

  • Vervoort R, Lennon A, Bird AC et al (2000) Mutational hot spot within a new RPGR exon in X-linked retinitis pigmentosa. Nat Genet 25:462–466

    Article  CAS  Google Scholar 

  • Yang HJ, Ratnapriya R, Cogliati T et al (2015) Vision from next generation sequencing: multi-dimensional genome-wide analysis for producing gene regulatory networks underlying retinal development, aging and disease. Prog Retin Eye Res 46:1–30

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rinki Ratnapriya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ratnapriya, R. (2019). Applications of Genomic Technologies in Retinal Degenerative Diseases. In: Bowes Rickman, C., Grimm, C., Anderson, R., Ash, J., LaVail, M., Hollyfield, J. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 1185. Springer, Cham. https://doi.org/10.1007/978-3-030-27378-1_46

Download citation

Publish with us

Policies and ethics