Skip to main content

Aerogels Through Ultrasonically-Assisted Synthesis

  • Chapter
  • First Online:
Springer Handbook of Aerogels

Part of the book series: Springer Handbooks ((SHB))

  • 1338 Accesses

Abstract

High power ultrasound applied to liquids produces cavities that attain very high temperatures and pressures (“hot spots”). When an alkoxide/water mixture is sonicated, the cavities act as nanoreactors, where the hydrolysis reaction starts. The products (alcohol, water, and silanol) help continue the dissolution of that immiscible mixture. The reactions depend on catalyst content, temperature bath, and alkyl group length. When the resultant sonosol gels, it produces a sonogel; it is denser, with finer and more homogeneous porosity than that of a classic counterpart. Thus, acoustic cavitation makes it possible to obtain nanostructured materials. Sono-aerogels have a high surface-to-volume ratio and are built by small particles (~1 nm radius) and a highly crosslinked network with low surface coverage of –OH radicals. The processing as well as their short-range order at an atomic scale and at a micrometric scale is presented in this chapter. Finally, these materials find application, among others as biomaterials for tissue engineering and for CO2 sequestration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Suslick, K.S.: See some of his Introductory reviews quoted at http://www.scs.uiuc.edu/suslick/. Accessed 31 Mar 2018

  2. Suslick, K.S., Price, J.P.: Applications of ultrasound to materials chemistry. Annu. Rev. Mater. Sci. 29, 295–326 (1999)

    CAS  Google Scholar 

  3. Lorimer, J.P., Mason, T.J.: Sonochemistry. Part 1 – the physical aspects. Chem. Soc. Rev. 16, 239–274 (1987)

    CAS  Google Scholar 

  4. Luche, J.L.: In: Price, G.J. (ed.) Current Trends in Sonochemistry, p. 34. RSC, Cambridge (1992)

    Google Scholar 

  5. Suslick, K.S., Didenko, Y., Fang, M.M., Hyeon, T., Kolbeck, K.J., McNamara III, W.B., Mdleleni, M.M., Wong, M.: Acoustic cavitation and its chemical consequences. Phil. Trans. R. Soc. Lond. A. 357, 335–353 (1999)

    CAS  Google Scholar 

  6. Suslick, K.S.: Sonochemistry. Science. 247, 1439–1445 (1990)

    CAS  Google Scholar 

  7. Mason, T.J.: Practical Sonochemistry. Ellis Horwood, Chichester (1991)

    Google Scholar 

  8. Price, G.J.: Ultrasonically enhanced polymer synthesis. Ultrason. Sonochem. 3, S229–S238 (1996)

    CAS  Google Scholar 

  9. Leighton, T.G.: The Acoustic Bubble. Academic, London (1994)

    Google Scholar 

  10. Tarasevich, M.: Ultrasonic hydrolysis of a metal alkoxide without alcohol. Cer. Bull. 63, 500 (1984) (Abstract only)

    Google Scholar 

  11. Boudjouk, P.: Electrochemical and sonochemical routes to organosilane precursors. In: Hench, L.L., Ulrich, D.R. (eds.) Science of Ceramics Chemical Processing. Wiley, New York (1986)

    Google Scholar 

  12. Cortes, A.D.S., Donatti, D.A., Ibáñez Ruiz, A., Vollet, D.R.: A kinetic study of the effect of ultrasound power on the sonohydrolysis of tetraethylorthosilicate. Ultrason. Sonochem. 14(6), 711–716 (2007)

    CAS  Google Scholar 

  13. Zarzycki, J.: Sonogels. Heterog. Chem. Rev. 1, 243 (1994)

    CAS  Google Scholar 

  14. Blanco, E., Esquivias, L., Litrán, R., Piñero, M., Ramírez-del-Solar, M., de la Rosa-Fox, N.: Sonogels and derived materials. Appl. Organomet. Chem. 13, 399 (1999)

    CAS  Google Scholar 

  15. Esquivias, L., Zarzycki, J.: Study of silica gels obtained by ultrasonic treatment of a silicon alkoxide. In: Baró, M.D., Clavaguera, N. (eds.) Current Topics on Non Crystalline Solids. World Scientific, Singapore (1986)

    Google Scholar 

  16. Esquivias, L., Zarzycki, J.: Sonogels: an alternative method in sol-gel processing. In: Mackenzie, J.D., Ulrich, D.R. (eds.) Ultrastructure Processing of Ceramics, Glasses and Composites. Wiley, New York (1988)

    Google Scholar 

  17. Zarzycki, J.: Ultrastructural models. In: Hench, L.L., West, J.K. (eds.) Chemical Processing of Advanced Materials, pp. 77–92. Wiley, New York (1992)

    Google Scholar 

  18. de la Rosa-Fox, N., Esquivias, L., Zarzycki, J.: Glasses from sonogels. Diffus. Defect Data. 53–54, 363–373 (1987)

    Google Scholar 

  19. de la Rosa-Fox, N., Esquivias, L., Zarzycki, J.: Textural characteristic of aerogels obtained from sonogels. Rev. Phys. Appl. 24(C4), 233–243 (1989)

    Google Scholar 

  20. de la Rosa-Fox, N., Esquivias, L., Craievich, A.F., Zarzycki, J.: Structural study of silica sonogels. J. Non-Cryst. Solids. 192, 211–215 (1987)

    Google Scholar 

  21. de la Rosa-Fox, N., Esquivias, L., Zarzycki, J.: Silica sonogels with drying control chemical additives. J. Mater. Sci. Lett. 10, 1237–1242 (1991)

    Google Scholar 

  22. Zarzycki, J.: Sonogels – development and perspectives. In: Ulhmann, D.R., Ulrich, D.R. (eds.) Ultrastructure Processing of Advanced Materials. Wiley, New York (1992)

    Google Scholar 

  23. Barrera-Solano, C., de la Rosa-Fox, N., Esquivias, L.: Ultrastructural aspects of silica sonogels. J. Non-Cryst. Solids. 147–148, 194–200 (1992)

    Google Scholar 

  24. Atik, M.: La cavitation et ses effets dans la synthèse des matériaux composites (SiO2/SiO2) et (SiO2-SiO2)B2O3). Étude détaillée du processus du frittage et effets des inclusions rigides. Ph.D. Thesis, Université de Montpellier II, France (1990)

    Google Scholar 

  25. Fernández-Lorenzo, C.: Estudio mediante espectroscopía Raman y resonancia magnética nuclear de la obtención y densificación de los geles mixtos. Ph.D. Thesis, Universidad de Cádiz, Spain (1993)

    Google Scholar 

  26. Fernández-Lorenzo, C., Esquivias, L., Barboux, P., Maquet, J., Taulelle, F.: Sol-gel synthesis of SiO2-P2O5 glasses. J. Non-Cryst. Solids. 176, 189–199 (1994)

    Google Scholar 

  27. Ramírez-del-Solar, M., Esquivias, L., Craievich, A., Zarzycki, J.: Ultrastructural evolution during gelation of TiO2-SiO2 sols. J. Non-Cryst. Solids. 147–148, 206–212 (1992)

    Google Scholar 

  28. Ramírez-del-Solar, M.: Efectos de los ultrasonidos sobre la transformación sol-gel. Estudio por dispersión de rayos x a bajos ángulos de las modificaciones inducidas en geles del sistema TiO2 -SiO2. Ph.D. Thesis, Universidad de Cádiz, Spain (1991)

    Google Scholar 

  29. Ramírez-del-Solar, M., de la Rosa-Fox, N., Esquivias, L., Zarzycki, J.: Effect of the method of preparation on the texture of TiO2-SiO2 gels. J. Non-Cryst. Solids. 121, 84–89 (1990)

    Google Scholar 

  30. Ramírez-del-Solar, M., Esquivias, L.: Ultrastructural evolution during sintering of mixed sonogels. J. Sol-Gel Sci. Technol. 3(1), 41–46 (1994)

    Google Scholar 

  31. Ruiz-Rube, J.M., Ramírez-del-Solar, M., de la Rosa-Fox, N., Esquivias, L.: Short-range order of 0.10TiO2-0.90 SiO2 aerogels. In: Colmenero, J., Alegría, A. (eds.) Basic Features of the Glassy State. World Scientific, Singapore (1990)

    Google Scholar 

  32. Calvino, J.J., Cauqui, M.A., Cifredo, G., Esquivias, L., Pérez, J.A., Ramírez-del-Solar, M., Rodríguez-Izquierdo, J.M.: Ultrasound as a tool for the preparation of gels: effect on the textural properties of TiO2-SiO2 aerogels. J. Mater. Sci. 28, 2191–2195 (1993)

    CAS  Google Scholar 

  33. Esquivias, L., Ramírez-del-Solar, M.: Short-range order of titania doped silica sono-aerogel. J. Non-Cryst. Solids. 220, 45–51 (1997)

    CAS  Google Scholar 

  34. Chaumont, D., Craievich, A.F., Zarzycki, J.: Effect of ultrasound on the formation of Zr2O sols and wet gels. J. Non-Cryst. Solids. 147–148, 41–46 (1992)

    Google Scholar 

  35. Chaumont, D.: Étude structurales de la formation des sols et des gels de zircone en présence d’ultrasons. Ph.D. Thesis. Université de Montpellier II, France (1992)

    Google Scholar 

  36. Piñero, M., Atik, M., Zarzycki, J.: Cordierite-Zr2O and cordierite-Al2O3 composites obtained by sonocatalytic method. J. Non-Cryst. Solids. 147&148, 523–531 (1992)

    Google Scholar 

  37. Piñero, M.: Elaboración de compuestos cerámica-cerámica con matriz cordierita por el método sol-gel, estudio de sus propiedades mecánicas. Ph.D. Thesis, Universidad de Cádiz, Spain (1993)

    Google Scholar 

  38. Esquivias, L., de la Rosa-Fox, N., Bejarano, M., Mosquera, M.J.: Structure of hybrid colloid-polymer xerogels. Langmuir. 20, 3416–3423 (2004)

    CAS  Google Scholar 

  39. Esquivias, L., Morales-Flórez, V., Mosquera, M.J., de la Rosa-Fox, N.: Changes in the structure of composite colloide-polymer xerogels after cold isostatic pressing. J. Sol-Gel Sci. Technol. 47, 194–202 (2008)

    CAS  Google Scholar 

  40. Ramírez-del-Solar, M., de la Rosa-Fox, N., Esquivias, L., Zarzycki, J.: Kinetic study of gelation of solventless alkoxide–water mixtures. J. Non-Cryst. Solids. 121, 40–44 (1990)

    Google Scholar 

  41. Donatti, D.A., Vollet, D.R.: A calorimetric study of the ultrasound-stimulated hydrolysis of solventless TEOS-water mixtures. J. Sol-Gel Sci. Technol. 4, 99–105 (1995)

    CAS  Google Scholar 

  42. Vollet, D.R., Donatti, D.A., Campanha, J.R.: A kinetic model for the ultrasounds catalyzed hydrolysis of solventless TEOS-water mixtures and the role of the initial addition of ethanol. J. Sol-Gel Sci. Technol. 6, 57–63 (1996)

    CAS  Google Scholar 

  43. Morita, K., Hu, Y., Mackenzie, J.D.: The effects of ultrasonic irradiation on the preparation and properties of ormosils. J. Sol-Gel Sci. Technol. 3, 109–116 (1994)

    CAS  Google Scholar 

  44. Marino, I.-G., Lottici, P.P., Bersani, D., Raschellà, R., Lorenzi, A., Montenero, A.: Micro-Raman monitoring of solvent-free TEOS hydrolysis. J. Non-Cryst. Solids. 351, 495–498 (2005)

    CAS  Google Scholar 

  45. Iler, R.: The Chemistry of Silica. Wiley, New York (1979)

    Google Scholar 

  46. Donatti, D.A., Vollet, D.R.: Study of the hydrolysis of TEOS-TMOS mixtures under ultrasound stimulation. J. Non-Cryst. Solids. 204(3), 301–304 (1996)

    CAS  Google Scholar 

  47. Donatti, D.A., Ibañez Ruiz, A., Vicelli, M.R., Vollet, D.R.: Structural properties of silica gels prepared from oxalic acid catalyzed tetraethoxysilane sonohydrolysis. Phys. Status Solidi A. 204(4), 1069–1076 (2007)

    CAS  Google Scholar 

  48. Couppis, E.C., Cklinzing, G.E.: Effect of cavitation on reacting systems. AIChE J. 20(3), 485–491 (1974)

    CAS  Google Scholar 

  49. Aerstin, F.G.P., Timmerhaus, K.D., Fogler, H.S.: Effect of the resonance parameter on a chemical reaction subjected to ultrasonic waves. AIChE J. 13(3), 453–456 (1967)

    CAS  Google Scholar 

  50. Kun-Hong, L., Yung-Pyo Kand Jae-Gong, L.: Synthesis of silica glass using solventless sol-gel process. J. Sol-Gel Sci. Technol. 2, 907–912 (1994)

    Google Scholar 

  51. Jonas, J., Irwin, A.D., Holmgen, J.S.: Solid state 29Si and 11B NMR studies of sol-gel derived borosilicates. J. Non-Cryst. Solids. 101, 249–254 (1988)

    Google Scholar 

  52. Pérez-Moreno, A., Jiménez-Solís, C., Esquivias, L., de la Rosa-Fox, N.: Estudio mediante RMN de la hidrólisis y policondensación de TEOS bajo la acción de ultrasonidos. Bol. Soc. Esp. Ceram. V. 37(1), 13–17 (1998)

    Google Scholar 

  53. Fuqua, P.D., Mansour, K., Alvarez, D., Marder, S.R., Perry, J.W., Dunn, B.S.: Synthesis and nonlinear optical properties of sol-gel materials containing phthalocyanines. In: SPIE vol. 1758, Sol-Gel Optics II (1992)

    Google Scholar 

  54. Cravotto, G., Cintas, P.: Molecular self-assembly and patterning induced by sound waves. The case of gelation. Chem. Soc. Rev. 38, 2684 (2009). https://doi.org/10.1039/b901840a

    Article  CAS  Google Scholar 

  55. Geng, H., Ye, L., Zhang, A., et al.: Ultrasound-induced gelation of fluorenyl-9-methoxycarbonyl-l-lysine(fluorenyl-9-methoxycarbonyl)-OH and its dipeptide derivatives showing very low minimum gelation concentrations. J. Colloid Interface Sci. 490, 665–676 (2017). https://doi.org/10.1016/j.jcis.2016.11.106

    Article  CAS  Google Scholar 

  56. Alameddine, B., Shetty, S., Anju, R., et al.: Highly soluble metal-organic polymers based on iron(II) clathrochelates and their gelation induced by sonication. Eur. Polym. J. 95, 566–574 (2017). https://doi.org/10.1016/j.eurpolymj.2017.08.049

    Article  CAS  Google Scholar 

  57. Avnir, D., Kaufman, V.R.: Alcohol is an unnecessary additive in the silicon alkoxide sol-gel process. J. Non-Cryst. Solids. 92(1), 180–182 (1987)

    CAS  Google Scholar 

  58. Ocotlán-Flores, J., Saniger, J.M.: Catalyst-free SiO2 sonogels. J. Sol-Gel Sci. Technol. 39, 235–240 (2006)

    Google Scholar 

  59. Morales-Saavedra, O.G., Rivera, E., Flores-Flores, J.O., Castañeda, R., Bañuelos, J.G., Saniger, J.M.: Preparation and optical characterization of catalyst free SiO2 sonogel hybrid materials. J. Sol-Gel Sci. Technol. 41, 277–289 (2007)

    CAS  Google Scholar 

  60. Chujo, Y., Sada, K., Saegusa, T.: Polyoxazoline having a coumarin moiety as a pendant group. Synthesis and photogelation. Macromolecules. 23, 2693–2697 (1990). https://doi.org/10.1021/ma00212a017

    Article  CAS  Google Scholar 

  61. Saeed, S., Al-Sobaihi, R., Bertino, M., et al.: Laser induced instantaneous gelation: aerogels for 3D printing. J. Mater. Chem. A. 3, 17606–17611 (2015). https://doi.org/10.1039/c5ta04215a

    Article  CAS  Google Scholar 

  62. Saeed, S., Al Soubaihi, R., White, L., et al.: Rapid fabrication of cross-linked silica aerogel by laser induced gelation. Microporous Mesoporous Mater. 221, 245–252 (2016). https://doi.org/10.1016/j.micromeso.2015.09.012

    Article  CAS  Google Scholar 

  63. Loy, D., Russick, E., Yamanaka, S., et al.: Direct formation of aerogels by sol−gel polymerizations of alkoxysilanes in supercritical carbon dioxide. Chem. Mater. 9, 2264–2268 (1997). https://doi.org/10.1021/cm970326f

    Article  CAS  Google Scholar 

  64. Smirnova, I., Arlt, W.: Synthesis of silica aerogels: influence of the supercritical CO2 on the sol-gel process. J. Sol-Gel Sci. Technol. 28, 175–184 (2003). https://doi.org/10.1023/a:1026072914972

    Article  CAS  Google Scholar 

  65. Gurikov, P., Raman, S., Weinrich, D., et al.: A novel approach to alginate aerogels: carbon dioxide induced gelation. RSC Adv. 5, 7812–7818 (2015). https://doi.org/10.1039/c4ra14653k

    Article  CAS  Google Scholar 

  66. Moner-Girona, M., Roig, A., Molins, E., Llibre, J.: Sol-gel route to direct formation of silica aerogel microparticles using supercritical solvents. J. Sol-Gel Sci. Technol. 26, 645–649 (2003). https://doi.org/10.1023/a:1020748727348

    Article  CAS  Google Scholar 

  67. Price, G.J., Hearn, M.P., Wallace, E., Patel, A.M.: Ultrasonically assisted synthesis and degradation of poly(dimethyl siloxane). Polymer. 37, 2303 (1996)

    CAS  Google Scholar 

  68. de la Rosa-Fox, N., Esquivias, L., Piñero, M.: Organic-inorganic hybrid materials from sonogels. In: Nalwa, H.S. (ed.) Handbook of Organic-Inorganic Hybrid Materials and Nanocomposites 2, pp. 241–270. American Scientific Publishers, Stevenson Ranch (2003)

    Google Scholar 

  69. de la Rosa-Fox, N., Morales-Flórez, V., Piñero, M., Esquivias, L.: Nanostructured sonogels in progress in sol-gel production. Key Eng. Mater. 391, 45–78 (2009)

    Google Scholar 

  70. Mackenzie, J.D.: Structures and properties of ormosils. J. Sol-Gel Sci. Technol. 2, 81–86 (1994)

    CAS  Google Scholar 

  71. Morita, K., Hu, Y., Mackenzie, J.D.: The effect of ultrasonic radiation on gelation and properties of ormosils. In: MRS (ed). Mater. Res. Soc. Symp. Proc. 271, 693–698 (1992)

    CAS  Google Scholar 

  72. Iwamoto, T., Mackenzie, J.D.: Hard ormosils prepared with ultrasonic radiation. J. Sol-Gel Sci. Technol. 4, 141–150 (1995)

    CAS  Google Scholar 

  73. Schmidt, H.: New type of non-crystalline solids between inorganic and organic materials. J. Non-Cryst. Solids. 73, 681–691 (1985)

    CAS  Google Scholar 

  74. Wilkes, G.L., Orler, B., Hyang, H.H.: Ceramers: hybrid materials incorporating polymeric/oligomeric species into inorganic glasses utilizing a sol-gel approach. Polym Preprints Polym. Prepr. 26, 300–302 (1985)

    CAS  Google Scholar 

  75. Iwamoto, T., Mackenzie, J.: Hard ormosils prepared with ultrasonic irradiation. J. Sol-Gel Sci. Tech. 4(2) (1995). https://doi.org/10.1007/BF00491680:141-150

  76. Glatter, O., Kratky, O.: Small Angle x-Ray Scattering. Academic, London (1982)

    Google Scholar 

  77. Schaefer, D.W.: Fractal models and the structure of materials. Mater. Res. Soc. Bull. 8, 22–27 (1988)

    Google Scholar 

  78. Zarzycki, J.: Structural aspects of sol-gel synthesis. J. Non-Cryst. Solids. 121, 110–118 (1990)

    CAS  Google Scholar 

  79. Porod, G.: In: Glatter, O., Kratky, O. (eds.) Small Angle x-Ray Scattering. Academic, London (1982)

    Google Scholar 

  80. Donatti, D., Ibáñez Ruiz, A., Vollet, D.: From sol to aerogel: a study of the nanostructural characteristics of TEOS derived sonogels. J. Non-Cryst. Solids. 292(1–3), 44–49 (2001)

    CAS  Google Scholar 

  81. Donatti, D.A., Vollet, D.R., Ibañez Ruiz, A.: Comparative study using small-angle x-ray scattering and nitrogen adsorption in the characterization of silica xerogels and aerogels. Phys. Rev. B. 69, 064202–1–064202–6 (2004)

    Google Scholar 

  82. Vollet, D.R., Donatti, D.A., Ibañez Ruiz, A., de Castro, W.C.: Structural evolution of aerogels prepared from TEOS sono-hydrolysis upon heat-treatment up to 1100°C. J. Non-Cryst. Solids. 332, 73–79 (2003)

    CAS  Google Scholar 

  83. Vollet, D.R., Torres, R.R., Donatti, D.A., Ibañez-Ruiz, A.: Structural characteristics of gels prepared from sonohydrolysis and conventional hydrolysis of TEOS: an emphasis on the mass fractal as determined from the pore size distribution. Phys. Status Solidi A. 202(14), 2700–2708 (2005)

    CAS  Google Scholar 

  84. Warren, B.E.: X-Ray Diffraction. Addison-Wesley, New York (1969)

    Google Scholar 

  85. Esquivias, L., Barrera-Solano, M.C., de la Rosa-Fox, N., Cumbrera, F.L., Zarzycki, J.: Determination of the skeletal density of silica gels from wide-angle x-ray diffraction. In: Ulhmann, D. (ed.) Ultrastructure Processing of Advanced Materials. Wiley, New York (1992)

    Google Scholar 

  86. Wei, W.: A new approach to high resolution RDF analysis. J. Non-Cryst. Solids. 81, 239–250 (1986)

    CAS  Google Scholar 

  87. Rosenthal, A.B., Garofalini, S.: Molecular dynamics study of amorphous titanium silicate. J. Non-Cryst. Solids. 107, 65–72 (1988)

    CAS  Google Scholar 

  88. Teo, B.K.: EXAFS: Basic Principles and Data Analysis, Inorganic Chemistry Concepts, vol. 9. Springer-Verlag, Berlin (1986)

    Google Scholar 

  89. Szu, S.P., Klein, L.C., Greenblatt, M.: Effect of precursors on the structure of phosphosilicate gels: 29Si and 31P MAS-NMR study. J. Non-Cryst. Solids. 143, 21–30 (1992)

    CAS  Google Scholar 

  90. Prabakar, S., Rao, K.J., Rao, C.N.R.: A MAS NMR investigation of aluminosilicate, silicophosphate and aluminosilicophosphate gels and the evolution of crystalline structures on heating the gels. J. Mater. Res. 6, 592–601 (1991)

    CAS  Google Scholar 

  91. Fernandez-Lorenzo, C., Martin, J., Esquivias, L.M., Blanco, E.: Raman spectroscopy of phosphorous-doped silica gels. In: Hench, L.L., West, J.K. (eds.) Chemical Processing of Advanced Materials. Wiley, New York (1992)

    Google Scholar 

  92. Brunauer, S., Emmett, P.H., Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938)

    CAS  Google Scholar 

  93. Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J., Siemieniewska, T.: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603–619 (1985)

    CAS  Google Scholar 

  94. de la Rosa-Fox, N., Esquivias, L., Zarzycki, J., Craievich, A.: Sintering of sonogels. Riv. della Staz Sper Vetro. 5, 67–70 (1990)

    Google Scholar 

  95. Donatti, D.A., Vollet, D.R., Ibañez Ruiz, A., Mesquita, A., Silva, T.F.P.: Mass fractal characteristics of silica sonogels as determined by small-angle x-ray scattering and nitrogen adsorption. Phys. Rev. B. 71, 014203–1–014203–7 (2005)

    Google Scholar 

  96. Donatti, D.A., Ibañez Ruiz, A., Kumakawa, M.M., Vollet, D.R.: Structural characteristics of silica sonogels prepared with additions of isopropyl alcohol. J. Phys. Chem. B. 110(43), 21582–21587 (2006)

    CAS  Google Scholar 

  97. Vacher, R., Woignier, T., Pelous, J., Courtens, E.: Structure and self-similarity of silica aerogels. Phys. Rev. B. 37, 6500–6503 (1988)

    CAS  Google Scholar 

  98. Sanchez, C., Ribot, F., Lebeau, B.: Design of hybrid organic-inorganic materials synthesized via sol-gel chemistry. New J. Chem. 18, 1007–1047 (1994)

    CAS  Google Scholar 

  99. Kramer, S., Rubio-Alonso, F., Mackenzie, J.: Organically modified silicate aerogels, “aeromosils”. MRS Proc. 435 (1996). https://doi.org/10.1557/PROC-435:295-300

  100. de la Rosa-Fox, N., Morales-Flórez, V., Toledo-Fernández, J.A., Piñero, M., Esquivias, L., Keiderling, U.: SANS study of hybrid silica aerogels under “in situ” uniaxial compression. J. Sol-Gel Sci.Tech. 45 (2008). https://doi.org/10.1007/s10971-008-1686-3:245-250

  101. Morales-Flórez, V., Piñero, M., Braza, V., Mesa-Díaz, M.M., Esquivias, L., de la Rosa-Fox, N.: Absorption capacity, kinetics and mechanical behaviour in dry and wet states of hydrophobic DEDMS/TEOS-based silica aerogels. J. Sol-Gel Sci.Tech. 81 (2017). https://doi.org/10.1007/s10971-016-4203-0:600-610

  102. Esquivias, L., Morales-Flórez, V., Piñero, M., de la Rosa-Fox, N., Ramírez, J., González-Calbet, J., Salinas, A., Vallet-Regí, M.: Bioactive organic-inorganic hybrid aerogels, “Aeromosils”. MRS Proc. 847, 1211–1216 (2005)

    Google Scholar 

  103. Mammeri, F., Le Bourhis, E., Rozes, L., Sanchez, C.: Mechanical properties of hybrid organic–inorganic materials. J. Mater. Chem. 15, 3787–3811 (2005)

    CAS  Google Scholar 

  104. Zarzycki, J.: Critical stress intensity factors of wet gels. J. Non-Cryst. Solids. 100, 359–363 (1988)

    CAS  Google Scholar 

  105. Ferry, J.D.: Viscoelastic Properties of Polymers, 3rd edn. Wiley, New York (1980)

    Google Scholar 

  106. Ward, I.M., Sweeney, J.: An Introduction to the Mechanical Properties of Solid Polymers, 2nd edn. Wiley (2004)

    Google Scholar 

  107. Schuh, C.A.: Mater. Today. 9, 32–40 (2006)

    CAS  Google Scholar 

  108. Oliver, W.C., Pharr, G.M.: J. Mater. Res. 7, 1564–1583 (1992)

    CAS  Google Scholar 

  109. Moner-Girona, M., Roig, A., Molins, E., Martínez, E., Esteve, J.: Micromechanical properties of silica aerogels. J. Appl. Phys. Lett. 75, 653–655 (1999)

    CAS  Google Scholar 

  110. Piñero, M., Morales-Flórez, V., de la Rosa-Fox, N., Esquivias, L.: Mechanical properties of hybrid aerogels. Bol. Soc. Esp. Ceram. V. 44(5), 291–293 (2005)

    Google Scholar 

  111. de la Rosa-Fox, N., Morales-Flórez, V., Toledo-Fernandez, J.A., Piñero, M., Mendoza-Serna, R., Esquivias, L.: Nanoindentation on hybrid organic/inorganic silica aerogels. J. Eur. Ceram. Soc. 27, 3311–3316 (2007)

    Google Scholar 

  112. Malkin, A.Y., Isayev, A.I.: Rheology: Concepts, Methods, and Applications, pp. 59–60. ChemTec Publishing (2006)

    Google Scholar 

  113. Esquivias, L., Morales-Flórez, V., Piñero, M., de la Rosa-Fox, N., Ramírez, J., González-Calbet, J., Salinas, A., Vallet-Regí, M.: Bioactive organic-inorganic hybrid aerogels. In: MRS proceedings, vol. 847: EE12.1- EE12.6, Material Research Society Press (2005)

    Google Scholar 

  114. Salinas, A.J., Vallet-Regí, M., Toledo-Fernández, J.A., Mendoza-Serna, R., Piñero, L., Esquivias, L., Ramírez-Castellanos, J., González-Calbet, J.M.: Nanostructure and bioactivity of hybrid aerogels. Chem. Mater. 21(1), 41–47 (2009)

    CAS  Google Scholar 

  115. Kokubo, T., Kushitani, H., Sakka, S., Kitsugi, T., Yamamuro, T.: Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W3. J. Biomed. Mater. Res. 24, 721–726 (1990)

    CAS  Google Scholar 

  116. Santos, A., Ajbary, M., Toledo-Fernández, J.A., Morales-Flórez, V., Kherbeche, A., Esquivias, L.: Reactivity of CO2 traps in aerogel-wollastonite composite. J. Sol-Gel Sci. Technol. 48, 224–230 (2008)

    CAS  Google Scholar 

  117. Santos, A., Toledo-Fernández, J.A., Mendoza-Serna, R., Gago-Duport, L., de la Rosa-Fox, N., Piñero, M., Esquivias, L.: Chemically active silica aerogel-wollastonite composites for CO2 fixation by carbonation reactions. Ind. Eng. Chem. Res. 46, 103–107 (2007)

    CAS  Google Scholar 

  118. Santos, A., Ajbary, M., Kherbeche, A., Piñero, M., de la Rosa-Fox, N., Esquivias, L.: Fast CO2 sequestration by aerogel composites. J. Sol-Gel Sci. Technol. 45, 291–297 (2007)

    Google Scholar 

  119. Santos, A., Ajbary, M., Piñero, M., Esquivias, L.: Material compuesto de aerogel de sílice y polvo de larnita y su uso en el almacenamiento y fijación de CO2 Patent # P200802914, Spain (2008)

    Google Scholar 

  120. Santos, A., Ajbary, M., Morales-Flórez, V., Kherbeche, A., Piñero, M., Esquivias, L.: Larnite powders and larnite/silica aerogel composites as effective agents for CO2 sequestration by carbonation. J. Hazard. Mater. 168(2–3), 1397–1403 (2009)

    CAS  Google Scholar 

  121. Esquivias, L., Morales-Flórez, V., Santos, A.: Xerogels, aerogels, and aerogel/mineral composites for CO2 sequestration. In: Klein, L., et al. (eds.) Handbook of Sol-Gel Science and Technology. Springer International Publishing (2016). https://doi.org/10.1007/978-3-319-19454-7_124-1

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Esquivias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Esquivias, L., Piñero, M., Morales-Flórez, V., de la Rosa-Fox, N. (2023). Aerogels Through Ultrasonically-Assisted Synthesis. In: Aegerter, M.A., Leventis, N., Koebel, M., Steiner III, S.A. (eds) Springer Handbook of Aerogels. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-27322-4_33

Download citation

Publish with us

Policies and ethics