Skip to main content

Phenolic Aerogels and Their Carbonization

  • Chapter
  • First Online:
Springer Handbook of Aerogels

Part of the book series: Springer Handbooks ((SHB))

  • 1380 Accesses

Abstract

Phenolic aerogels comprise an important class of organic aerogels with potential for use in thermal superinsulation applications and which serve as precursors to electrically conducting carbon aerogels of importance to applications including filtration, energy generation (e.g., electrodes in fuel cells), energy storage (e.g., electrodes for batteries and supercapacitors), and other green energy technologies. Historically, the most important variety of phenolic-resin-based aerogels has been based on resorcinol-formaldehyde (RF) chemistry, but in recent years aerogels based on polybenzoxazine (PBO) chemistry have become increasingly important as well. In this chapter, we present a broad overview of these materials, focusing on how the chemical, microscopic, and macroscopic characteristics of RF aerogels, and thereby carbon aerogels, can be tailored to achieve desired application-specific structure-property relationships via variation of processing conditions such as monomer chemical identity, monomer concentration, pH, and catalyst-to-monomer ratio. Emphasis is placed on chemical transformations that occur during processing as well as on how chemical composition and structure drive materials properties. Discussion of PBOs focuses on a recently developed room-temperature acid-catalyzed synthetic route that enables deconvolution of polymerization of the monomer from subsequent curing steps, which led to the discovery of ring-fusion aromatization as a reaction pathway available to benzoxazine monomers that proves to be a main property-determining factor during subsequent carbonization. Ring-fusion aromatization in PBOs was extended to and its effect studied in other mainstream phenolic aerogels derived not only from resorcinol but also from phenol and from phloroglucinol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 22 November 2023

    A correction has been published.

References

  1. Fricke, J.: Aerogels – highly tenuous solids with fascinating properties. J. Non-Cryst. Solids. 100, 169–173 (1988)

    CAS  Google Scholar 

  2. Fricke, J.: Aerogels and their applications. J. Non-Cryst. Solids. 147–148, 356–362 (1992)

    Google Scholar 

  3. Hench, L., West, J.: The sol-gel process. Chem. Rev. 90, 33–72 (1990)

    CAS  Google Scholar 

  4. Brinker, C., Scherer, G.: Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. Academic Press Inc. (1990)

    Google Scholar 

  5. Carlson, G., Lewis, D., McKinley, K., Richardson, J., Tillotson, T.: Aerogel commercialization: technology, markets and costs. J. Non-Cryst. Solids. 186, 372–379 (1995)

    CAS  Google Scholar 

  6. Kistler, S.S.: Coherent expanded aerogels and jellies. Nature. 127, 741 (1931)

    CAS  Google Scholar 

  7. Kistler, S.S.: Coherent expanded-aerogels. J. Phys. Chem. 36, 52–64 (1932)

    CAS  Google Scholar 

  8. Pekala, R.W.: Organic aerogels from the polycondensation of resorcinol with formaldehyde. J. Mater. Sci. 24, 3221–3227 (1989)

    CAS  Google Scholar 

  9. Wu, D., Fu, R., Sun, Z., Yu, Z.: Low-density organic and carbon aerogels from the sol-gel polymerization of phenol with formaldehyde. J. Non-Cryst. Solids. 351, 915–921 (2005)

    CAS  Google Scholar 

  10. Mendenhall, R., Andrews, G., Bruno, J., Albert, D.: Phenolic aerogels by high-temperature direct solvent extraction. U S Pat Ser No 221520. (2000)

    Google Scholar 

  11. Pekala, R.W.: Melamine-formaldehyde copolymer aerogels. US5081163 A19920114. (1992)

    Google Scholar 

  12. Nguyen, M., Dao, L.: Effects of processing variable on melamine formaldehyde aerogel formation. J. Non-Cryst. Solids. 225, 51–57 (1998)

    CAS  Google Scholar 

  13. Alviso, C., Pekala, R.W.: Melamine formaldehyde aerogels. Polym Preprints. 32, 242–243 (1991)

    CAS  Google Scholar 

  14. Li, W., Reichenauer, G., Fricke, J.: Carbon aerogels derived from cresol-resorcinol-formaldehyde for supercapacitors. Carbon. 40, 2955–2959 (2002)

    CAS  Google Scholar 

  15. Pekala, R.W.: Organic aerogels from the sol-gel polymerization of phenolic-furfural mixtures. US5476878 A19951219. (1995)

    Google Scholar 

  16. Pierre, A., Pajonk, G.: Chemistry of aerogels and their applications. Chem. Rev. 102, 4243–4265 (2002)

    CAS  Google Scholar 

  17. Donthula, S., Mandal, C., Leventis, T., Schisler, J., Saeed, A.M., Sotiriou-Leventis, C., Leventis, N.: Shape-memory poly(isocyanurate-urethane) (PIR-PUR) aerogels for deployable panels and biomimetic applications. Chem. Mater. 29, 4461–4477 (2017)

    CAS  Google Scholar 

  18. Bang, A., Buyback, C., Sotiriou-Leventis, C., Leventis, N.: Flexible aerogels from hyperbranched polyurethanes: probing the role of molecular rigidity with poly(urethane acrylates) versus poly(urethane norbornenes). Chem. Mater. 26, 6979–6993 (2014)

    CAS  Google Scholar 

  19. Leventis, N., Chidambareswarapattar, C., Bang, A., Sotiriou-Leventis, C.: Cocoon-in-web-like superhydrophobic aerogels from hydrophilic polyurea and use in environmental remediation. ACS Appl. Mater. Interfaces. 6, 6872–6882 (2014)

    CAS  Google Scholar 

  20. Chidambareswarapattar, C., Xu, L., Sotiriou-Leventis, C., Leventis, N.: Robust monolithic multiscale nanoporous polyimides and conversion to isomorphic carbons. RSC Adv. 3, 26459–26469 (2013)

    CAS  Google Scholar 

  21. Sadekar, A.G., Mahadik, S.S., Bang, A.N., Larimore, Z.J., Wisner, C.A., Bertino, M.F., Kalkan, A.K., Mang, J.T., Sotiriou-Leventis, C., Leventis, N.: “Green” aerogels and porous carbons by emulsion gelation of acrylonitrile. Chem. Mater. 24, 26–47 (2012)

    CAS  Google Scholar 

  22. Leventis, N., Sotiriou-Leventis, C., Chandrasekaran, N., Mulik, S., Larimore, Z.J., Lu, H., Churu, G., Mang, J.T.: Multifunctional polyurea aerogels from isocyanates and water. A structure-property case study. Chem Mater. 22, 6692–6710 (2010)

    CAS  Google Scholar 

  23. Al-Muhtaseb, S., Ritter, J.: Preparation and properties of resorcinol-formaldehyde organic and carbon gels. Adv. Mater. 15, 101–114 (2003)

    CAS  Google Scholar 

  24. Laskowski, J., Milow, B., Ratke, L.: Subcritically dried resorcinol-formaldehyde aerogels from a base-acid catalyzed synthesis route. Microporous Mesoporous Mater. 197, 308–315 (2014)

    CAS  Google Scholar 

  25. Mulik, S., Sotiriou-Leventis, C., Leventis, N.: Time-efficient acid-catalyzed synthesis of resorcinol-formaldehyde aerogels. Chem. Mater. 19, 6138–6144 (2007)

    CAS  Google Scholar 

  26. Barbieri, O., Ehrburger-Dolle, F., Rieker, T., Pajonk, G., Pinto, N., Venkateswara Rao, A.: Small-angle X-ray scattering of a new series of organic aerogels. J. Non-Cryst. Solids. 285, 109–115 (2001)

    CAS  Google Scholar 

  27. Brandt, R., Fricke, J.: Acetic-acid-catalyzed and subcritically dried carbon aerogels with a nanometer-sized structure and a wide density range. J. Non-Cryst. Solids. 350, 131–135 (2004)

    CAS  Google Scholar 

  28. Gross, J., Scherer, G.W., Alviso, C.T., Pekala, R.W.: Elastic properties of crosslinked resorcinol-formaldehyde gels and aerogels. J. Non-Cryst. Solids. 211, 132–142 (1997)

    CAS  Google Scholar 

  29. Pekala, R.W., Alviso, C.T., LeMay, J.D.: Organic aerogels: microstructural dependence of mechanical properties in compression. J. Non-Cryst. Solids. 125, 67–75 (1990)

    CAS  Google Scholar 

  30. Yang, J., Li, S., Yan, L., Liu, J., Wang, F.: Compressive behaviors and morphological changes of resorcinol-formaldehyde aerogel at high strain rates. Microporous Mesoporous Mater. 133, 134–140 (2010)

    CAS  Google Scholar 

  31. Schwan, M., Naikade, M., Raabe, D., Ratke, L.: From hard to rubber-like: mechanical properties of resorcinol-formaldehyde aerogels. J. Mater. Sci. 50, 5482–5493 (2015)

    CAS  Google Scholar 

  32. Alshrah, M., Tran, M.-P., Gong, P., Naguib, H.E., Park, C.B.: Development of high-porosity resorcinol formaldehyde aerogels with enhanced mechanical properties through improved particle necking under CO2 supercritical conditions. J. Colloid Interface Sci. 485, 65–74 (2017)

    CAS  Google Scholar 

  33. Aghabararpour, M., Mohsenpour, M., Motahari, S., Abolghasemi, A.: Mechanical properties of isocyanate crosslinked resorcinol formaldehyde aerogels. J. Non-Cryst. Solids. 481, 548–555 (2018)

    CAS  Google Scholar 

  34. Pekala, R.W., Schaefer, D.: Structure of organic aerogels 1. Morphology and scaling. Macromoleculres. 26, 5487–5493 (1993)

    CAS  Google Scholar 

  35. Gebert, M., Pekala, R.: Fluorescence and light-scattering studies of sol-gel reactions. Chem. Mater. 6, 220–226 (1994)

    CAS  Google Scholar 

  36. Jirglova, H., Perez-Cadenas, A., Maldonado-Hodar, F.: Synthesis and properties of phloroglucinol-phenol-formaldehyde carbon aerogels and xerogels. Langmuir. 25, 2461–2466 (2009)

    CAS  Google Scholar 

  37. Durairaj, R.: Resorcinol: Chemistry, Technology and Applications, pp. 186–187. Springer, Berlin (2005)

    Google Scholar 

  38. Sprung, M.: Reactivity of phenols toward paraformaldehyde. J. Am. Chem. Soc. 63, 334–343 (1941)

    CAS  Google Scholar 

  39. Pizzi, A., Mittal, K.: Resorcinol Adhesive, Handbook of Adhesive Technology, 2nd edn. Marcel Dekker, Inc., New York (2003)

    Google Scholar 

  40. Mulik, S., Sotiriou-Levetis, C., Leventis, N.: Acid-catalyzed time-efficient synthesis of resorcinol-formaldehyde aerogels and crosslinking with isocyanates. Polym Preprints. 47, 364–365 (2006)

    CAS  Google Scholar 

  41. Yamamoto, T., Nishimura, T., Suzuki, T., Tamon, H.: Control of mesoporosity of carbon gels prepared by sol-gel polycondensation and freeze drying. J. Non-Cryst. Solids. 288, 46–55 (2001)

    CAS  Google Scholar 

  42. Tamon, H., Ishizaka, H., Mikami, M., Okazaki, M.: Porous structure of organic and carbon aerogels synthesized by sol-gel polycondensation of resorcinol with formaldehyde. Carbon. 35, 791–796 (1997)

    CAS  Google Scholar 

  43. Fung, A.W.P., Reynolds, G.A.M., Wang, Z., Dresselhaus, M., Dresselhaus, G., Pekala, R.W.: Relationship between particle size and magnetoresistance in carbon aerogels prepared under different catalyst conditions. J. Non-Cryst. Solids. 186, 200–208 (1995)

    CAS  Google Scholar 

  44. Horikawa, T., Hayashi, J., Muroyama, K.: Controllability of pore characteristics of resorcinol-formaldehyde carbon aerogel. Carbon. 42, 1625–1633 (2004)

    CAS  Google Scholar 

  45. Horikawa, T., Hayashi, J., Muroyama, K.: Size control and characterization of spherical carbon aerogel particles from resorcinol-formaldehyde resin. Carbon. 42, 169–175 (2004)

    CAS  Google Scholar 

  46. Pahl, R., Bonse, U., Pekala, R.W., Kinney, J.: SAXS investigations on organic aerogels. J. Appl. Crystallogr. 24, 771–776 (1991)

    CAS  Google Scholar 

  47. Saliger, R., Bock, V., Petricevic, R., Tillotson, T., Geis, S., Fricke, J.: Carbon aerogels from dilute catalysis of resorcinol with formaldehyde. J. Non-Cryst. Solids. 221, 144–150 (1997)

    CAS  Google Scholar 

  48. Fairen-Jimenez, D., Carrasco-Marin, F., Moreno-Castilla, C.: Inter- and intra-primary-particle structure of monolithic carbon aerogels obtained with varying solvents. Langmuir. 24, 2820–2825 (2008)

    CAS  Google Scholar 

  49. Mirzaeian, M., Hall, P.: The control of porosity at nano scale in resorcinol formaldehyde carbon aerogels. J. Mater. Sci. 44, 2705–2713 (2009)

    CAS  Google Scholar 

  50. Tamon, H., Ishizaka, H.: Porous characterization of carbon aerogels. Carbon. 36, 1397–1399 (1998)

    CAS  Google Scholar 

  51. Lin, C., Ritter, J.: Effect of synthesis pH on the structure of carbon xerogels. Carbon. 35, 1271–1278 (1997)

    CAS  Google Scholar 

  52. Job, N., Pirard, R., Marien, J., Pirard, J.: Porous carbon xerogels with texture tailored by pH control during sol-gel process. Carbon. 42, 619–628 (2004)

    CAS  Google Scholar 

  53. Feng, Y., Miao, L., Tanemura, M., Tanemura, S., Suzuki, K.: Effects of further adding of catalysts on nanostructures of carbon aerogels. Mater. Sci. Eng. B. 148, 273–276 (2008)

    CAS  Google Scholar 

  54. Schwan, M., Ratke, L.: Flexibilization of resorcinol-formaldehyde aerogels. J. Mater. Chem. A. 1, 13462–135468 (2013)

    CAS  Google Scholar 

  55. Tannert, R., Schwan, M., Ratke, L.: Reduction of shrinkage and brittleness for resorcinol-formaldehyde aerogels my means of a pH-controlled sol-gel process. J. Supercrit. Fluids. 106, 57–61 (2015)

    CAS  Google Scholar 

  56. Schwan, M., Tannert, T., Ratke, L.: New soft and spongy resorcinol-formaldehyde aerogels. J. Supercrit. Fluids. 107, 201–208 (2016)

    CAS  Google Scholar 

  57. Tannert, R., Schwan, M., Rege, A., Eggeler, M., Cesar da Silva, C., Bartsch, M., Milow, B., Itskov, M., Ratke, L.: The three-dimensional structure of flexible resorcinol-formaldehyde aerogels investigated by means of holotomography. J. Sol-Gel Sci. Technol. 84, 391–399 (2017)

    CAS  Google Scholar 

  58. Conceicao, F., Carrott, P.J.M., Ribeiro Carrott, M.M.L.: New carbon materials with high porosity in the 1–7 nm range obtained by chemical activation with phosphoric acid of resorcinol-formaldehyde aerogels. Carbon. 47, 1874–1877 (2009)

    CAS  Google Scholar 

  59. Merzbacher, C., Meier, S., Pierce, J., Korwin, M.: Carbon aerogels as broadband non-reflective materials. J. Non-Cryst. Solids. 285, 210–215 (2001)

    CAS  Google Scholar 

  60. Fairen-Jimenez, D., Carrasco-Marin, F., Moreno-Castilla, C.: Porosity and surface area of monolithic carbon aerogels prepared using alkaline carbonates and organic acids as polymerization catalysts. Carbon. 44, 2301–2307 (2006)

    CAS  Google Scholar 

  61. Berthon, S., Barbieri, O., Ehrburger-Dolle, F., Geissler, E., Achard, P., Bley, F., Hecht, A.-M., Livet, F., Pajonk, G., Pinto, N., Rigacci, A., Rochas, C.: DLS and SAXS investigations of organic gels and aerogels. J. Non-Cryst. Solids. 285, 154–161 (2001)

    CAS  Google Scholar 

  62. Brandt, R., Petricevic, R., Proebstle, H., Fricke, J.: Acetic acid catalyzed carbon aerogels. J. Porous. Mater. 10, 171–178 (2003)

    CAS  Google Scholar 

  63. Reuss, M., Ratke, L.: Subcritically dried RF-aerogels catalyzed by hydrochloric acid. J. Sol-Gel Sci. Technol. 47, 74–80 (2008)

    CAS  Google Scholar 

  64. Baumann, T., Satcher, J., Gash, A.: Preparation of hydrophobic organic aerogels. US Pat Appl US2002173554 A1 20021121. (2002)

    Google Scholar 

  65. March, J.: Advanced Organic Chemistry, Reactions Mechanisms and Structure, 4th edn, pp. 548–550. Wiley, New York (1992)

    Google Scholar 

  66. Lermontov, S.A., Malkova, A.N., Sipyagina, N.A., Straumal, E.A., Baranchikov, A.E., Yorov, K.E., Ivanov, V.K.: Facile synthesis of fluorinated resorcinol-formaldehyde aerogels. J. Fluor. Chem. 193, 1–7 (2017)

    CAS  Google Scholar 

  67. Moudrakovski, I., Ratcliffe, C., Ripmeester, J., Wang, L., Exarhos, G., Baumann, T., Satcher, J.: Nuclear magnetic resonance studies of resorcinol-formaldehyde aerogels. J. Phys. Chem. B. 109, 11215–11222 (2005)

    CAS  Google Scholar 

  68. Werstler, D.: Quantitative carbon-13 NMR characterization of aqueous formaldehyde resins: 2 resorcinol-formaldehyde resins. Polymer. 27, 757–764 (1986)

    CAS  Google Scholar 

  69. Pekala, R.W., Alviso, C.T., Kong, F.M., Hulsey, S.S.: Aerogels derived from multifunctional organic monomers. J. Non-Cryst. Solids. 145, 90–98 (1992)

    CAS  Google Scholar 

  70. Al-Muhtaseb, S.A., Ritter, J.A.: Preparation and properties of resorcinol-formaldehyde organic and carbon aerogels. Adv. Mater. 15, 101–114 (2003)

    CAS  Google Scholar 

  71. Mulik, S., Sotiriou-Leventis, C., Leventis, N.: Macroporous electrically conducting carbon networks by pyrolysis of isocyanate-cross-linked resorcinol-formaldehyde aerogels. Chem. Mater. 20, 6985–6997 (2008)

    CAS  Google Scholar 

  72. Holly, F.W., Cope, A.C.: Condensation products of aldehydes and ketones with o-aminobenzyl alcohol and o-hydroxybenzylamine. J. Am. Chem. Soc. 66, 1875–1879 (1944)

    CAS  Google Scholar 

  73. Ning, X., Ishida, H.J.: Phenolic materials via ring-opening polymerization: synthesis and characterization of bisphenol-A based benzoxazines and their polymers. Polym Sci. Part A Polym. Chem. 32, 1121–1129 (1994)

    CAS  Google Scholar 

  74. Ning, X., Ishida, H.: Phenolic materials via ring-opening polymerization of benzoxazines: effect of molecular structure on mechanical and dynamic mechanical properties. J. Polym. Sci. B Polym. Phys. 32, 921–927 (1994)

    CAS  Google Scholar 

  75. Kumar, K.S.S.: Polybenzoxazines and state-of-the-art high-temperature polymers in Polybenzoxazines: chemistry and properties, Chapter 1. In: Kumar, K.S.S., Raghunadhan Nair, C.P. (eds.) iSmithers Rapra Technology: Shrewsbury, Shropshire (2010)

    Google Scholar 

  76. Lorjai, P., Chaisuwan, T., Wongkasemjit, S.: Porous structure of polybenzoxazine-based organic aerogel prepared by sol-gel process and their carbon aerogels. J. Sol-Gel Sci. Technol. 52, 56–64 (2009)

    CAS  Google Scholar 

  77. Takeichi, T., Kano, T., Agag, T.: Synthesis and thermal cure of high molecular weight polybenzoxazine precursors and the properties of the thermosets. Polymer. 46, 12172–12180 (2005)

    CAS  Google Scholar 

  78. Andronescu, C., Garea, S.A., Deleanu, C., Lovu, H.: Characterization and curing kinetics of new benzoxazine monomer based on aromatic diamines. Thermochim. Acta. 530, 42–51 (2012)

    CAS  Google Scholar 

  79. Dunkers, J., Ishida, H.: Reaction of benzoxazine-based phenolic resins with strong and weak carboxylic acids and phenols as catalysts. J. Polym. Sci. Part A Polym. Chem. 37, 1913–1921 (1999)

    CAS  Google Scholar 

  80. Wang, Y.-X., Ishida, H.: Cationic ring-opening polymerization of benzoxazines. Polymer. 40, 4563–4570 (1999)

    CAS  Google Scholar 

  81. Wang, Y.-X., Ishida, H.: Synthesis and properties of new thermoplastic polymers from substituted 3,4-dihydro-2H-1,3-benzoxazines. Macromolecules. 33, 2839–2847 (2000)

    CAS  Google Scholar 

  82. Liu, C., Shen, D., Sebastián, R.M., Marquet, J., Schönfeld, R.: Mechanistic studies on ring-opening polymerization of benzoxazines. Macromolecules. 44, 4616–4622 (2011)

    CAS  Google Scholar 

  83. Ran, Q.-C., Zhang, D.-X., Zhu, R.-Q., Gu, Y.: The structural transformation during polymerization of benzoxazine/FeCl3 and the effect on the thermal stability. Polymer. 53, 4119–4127 (2012)

    CAS  Google Scholar 

  84. Liu, C., Shen, D., Sebastián, R.M., Marquet, J., Schönfeld, R.: Catalyst effects on the ring-opening polymerization of 1,3-benzoxazine and on the polymer structure. Polymer. 54, 2873–2878 (2013)

    CAS  Google Scholar 

  85. Mahadik-Khanolkar, S., Donthula, S., Sotiriou-Leventis, C., Leventis, N.: Polybenzoxazine aerogels. 1. High-yield room-temperature acid-catalyzed synthesis of robust monoliths, oxidative aromatization, and conversion to microporous carbons. Chem. Mater. 26, 1303–1317 (2014)

    CAS  Google Scholar 

  86. Katsoulidis, A.P., Kanatzidis, M.G.: Phloroglucinol based microporous polymeric organic frameworks with –OH functional groups and high CO2 capture capacity. Chem. Mater. 23, 1818–1824 (2011)

    CAS  Google Scholar 

  87. Majedi Far, H., Donthula, S., Taghvaee, T., Saeed, A.M., Garr, Z., Sotiriou-Leventis, C., Leventis, N.: Air-oxidation of phenolic resin aerogels: backbone reorganization, formation of ring-fused pyrylium cations, and the effect on microporous carbons with enhanced surface areas. RSC Adv. 7, 51104–51120 (2017)

    Google Scholar 

  88. López, G.P., Castner, D.G., Ratner, B.D.: XPS oxygen 1s binding energies for polymers containing hydroxyl, ether, ketone and ester groups. Surf. Interface Anal. 17, 267–272 (1991)

    Google Scholar 

  89. Briggs, D., Beamson, G.: XPS studies of the oxygen 1s and 2s levels in a wide range of functional polymers. Anal. Chem. 65, 1517–1523 (1993)

    CAS  Google Scholar 

  90. Ganguly, A., Sharma, S., Papakonstantinou, O., Hamilton, J.: Probing the thermal deoxygenation of graphene oxide using high-resolution in situ x-ray-based spectroscopies. J. Phys. Chem. C. 115, 17009–17019 (2011)

    CAS  Google Scholar 

  91. Ciriello, R., Guerrieri, A., Pavese, F., Salvi, A.M.: Electrosynthesized, non-conducting films of poly(2-naphthol): electrochemical and XPS investigations. Anal. Bioanal. Chem. 392, 913–926 (2008)

    CAS  Google Scholar 

  92. Lawrinenko, M., Laird, D.A.: Anion exchange capacity of biochar. Green Chem. 17, 4628–4636 (2015)

    CAS  Google Scholar 

  93. Kim, C.M., Jeong, H.S., Kim, E.H.: NEXAFS and XPS characterization of molecular oxygen adsorbed on Ni(100) at 80 K. Surf. Sci. 459, L457–L461 (2000)

    CAS  Google Scholar 

  94. Wu, L.Q., Li, S.Q., Li, Y.C., Li, Z.Z., Tang, G.D., Qi, W.H., Xue, L.C., Ding, L.L., Ge, X.S.: Presence of monovalent oxygen anions in oxides demonstrated using x-ray photoelectron spectra. Appl. Phys. Lett. 108, 021905 (2016)

    Google Scholar 

  95. Saeed, A.M., Rewatkar, P.M., Majedi Far, H., Taghvaee, T., Donthula, S., Mandal, C., Sotiriou-Leventis, C., Leventis, N.: Selective CO2 sequestration with monolithic bimodal micro/macroporous carbon aerogels derived from stepwise pyrolytic decomposition of polyamide-polyimide-polyurea random copolymers. ACS Appl. Mater. Interfaces. 9, 13520–13536 (2017)

    CAS  Google Scholar 

  96. Lu, X., Arduini-Schuster, M., Kuhn, J., Nilsson, O., Fricke, J., Pekala, R.: Thermal conductivity of monolithic organic aerogels. Science. 255, 971–972 (1992)

    CAS  Google Scholar 

  97. Yoldas, B., Annen, M., Bostaph, J.: Chemical engineering of aerogel morphology formed under nonsupercritical conditions for thermal insulation. Chem. Mater. 12, 2475–2484 (2000)

    CAS  Google Scholar 

  98. Alviso, C., Pekala, R.W., Gross, J., Lu, X., Caps, R., Fricke, J.: Resorcinol-formaldehyde and carbon aerogel microspheres. Mater. Res. Soc. Sym. Proc., 521–525 (1996)

    Google Scholar 

  99. Hrubesh, L., Pekala, R.: Thermal properties of organic and inorganic aerogels. J. Mater. Res. 9, 731–738 (1994)

    CAS  Google Scholar 

  100. Rettelbach, T., Ebert, H., Caps, R., Fricke, J., Alviso, C., Pekala, R.: Thermal conductivity of resorcinol-formaldehyde aerogels. Therm. Cond. 23, 407–418 (1996)

    CAS  Google Scholar 

  101. Homonoff, E.: New filtration materials for the new millennium. Book of Papers – International Nonwovens Technical Conference, Dallas (2000) Sept 26–28, 2000, 8.1–8.6

    Google Scholar 

  102. Yuan, Z., Govind, R.A., Misra, R.P., Drahushuk, L.W., Strano, M.S., Blanksctein, D., Agrawal, K.V.: Mechanism and prediction of gas permeation through sub-nanometer graphene pores: comparison of theory and simulation. ACS Nano. 11, 7974–7987 (2017)

    CAS  Google Scholar 

  103. Kabbour, H., Baumann, T.F., Satcher Jr., J.H., Saulnier, A., Ahn, C.C.: Toward new candidates for hydrogen storage: high-surface-area carbon aerogels. Chem. Mater. 18, 6085–6087 (2006)

    CAS  Google Scholar 

  104. Anas, M., Unsal, S., Erkey, C.: Investigation of various aerogels as adsorbents for methane storage. (2017). https://doi.org/10.1016/j.supflu.2017.11.032

  105. Chung, V.P., Yip, M.-C., Fang, W.: Resorcinol-formaldehyde aerogels for CMOS-MEMS capacitive humidity sensor. Sensors Actuators B Chem. 214, 181–188 (2015)

    CAS  Google Scholar 

  106. Berthon-Fabry, S., Langohr, D., Achard, P., Charrier, D., Djurado, D., Ehrburger-Dolle, F.: Anisotropic high-surface-area carbon aerogels. J. Non-Cryst. Solids. 350, 136–144 (2004)

    CAS  Google Scholar 

  107. Farmer, J., Fix, D., Mack, G., Pekala, R.W., Poco, J.: Capacitive deionization of NH4ClO4 solutions with carbon aerogel electrodes. J. Appl. Electrochem. 26, 1007–1018 (1996)

    CAS  Google Scholar 

  108. Petricevic, R., Glora, M., Fricke, J.: Planar fiber reinforced carbon aerogels for application in PEM fuel cells. Carbon. 39, 857–867 (2001)

    CAS  Google Scholar 

  109. Gierszal, K., Jaroniec, M.: Carbons with extremely large volume of uniform Mesopores synthesized by carbonization of phenolic resin film formed on colloidal silica template. J. Am. Chem. Soc. 128, 10026–10027 (2006)

    CAS  Google Scholar 

  110. Tao, Y., Endo, M., Kaneko, K.: Hydrophilicity-controlled carbon aerogels with high mesoporosity. J. Am. Chem. Soc. 131, 904–905 (2009)

    CAS  Google Scholar 

  111. Marie, J., Berthon-Fabry, S., Achard, P., Chatenet, M., Pradourat, A., Chainet, E.: Highly dispersed platinum on carbon aerogels as supported catalysts for PEM fuel cell-electrodes: comparison of two different synthesis paths. J. Non-Cryst. Solids. 350, 88–96 (2004)

    CAS  Google Scholar 

  112. Wicks, Z., Jones, F., Pappas, S.: Organic Coatings: Science and Technology, Vol. 1: Applications, Properties, and Performance, pp. 84–87. Wiley, New York (1994)

    Google Scholar 

  113. Raetzsch, M., Bucka, H., Ivanchev, S., Pavlyuchenko, V., Leitner, P., Primachenko, O.: The reaction mechanism of the transetherification and crosslinking of melamine resins. Macromol. Symp. 217, 431–443 (2004)

    CAS  Google Scholar 

  114. Mandal, C., Donthula, S., Soni, R., Bertino, M., Sotiriou-Leventis, C., Leventis, N.: Light scattering and haze in TMOS-co-APTES silica aerogels. J. Sol-Gel Sci. Technol. 90, 127–139 (2018)

    Google Scholar 

  115. Mandal, C., Donthula, S., Majedi Far, H., Saeed, A.M., Sotiriou-Leventis, C., Leventis, N.: Transparent, mechanically strong, thermally insulating cross-linked silica aerogels for energy-efficient windows. J. Sol-Gel Sci. Technol. 92, 84–100 (2019)

    CAS  Google Scholar 

  116. Perez-Caballero, F., Peikolainen, A.-L., Uibu, M., Kuusik, R., Volobujeva, O., Koel, M.: Preparation of carbon aerogels from 5-methylresorcinol-formaldehyde gels. Microporous Mesoporous Mater. 108, 230–236 (2008)

    CAS  Google Scholar 

  117. Peikolainen, A.-L., Perez-Caballero, F., Koel, M.: Low-density organic aerogels from oil shale by-product 5-methylresorcinol. Oil Shale. 25, 348–358 (2008)

    CAS  Google Scholar 

  118. Tanaka, S., Katayama, Y., Tate, M., Hillhouse, H., Miyake, Y.: Fabrication of continuous mesoporous carbon films with face-centered orthorhombic symmetry through a soft templating pathway. J. Mater. Chem. 17, 3639–3645 (2007)

    CAS  Google Scholar 

  119. Baumann, T., Satcher, J.: Template-directed synthesis of periodic macroporous organic and carbon aerogels. J. Non-Cryst. Solids. 350, 120–125 (2004)

    CAS  Google Scholar 

  120. Lei, Q., Song, H., Chen, X., Li, M., Li, A., Tang, B., Zhou, D.: Effects of graphene oxide addition on the synthesis and supercapacitor performance of carbon aerogel particles. RSC Adv. 6, 40683–40690 (2016)

    CAS  Google Scholar 

  121. Worsley, M.A., Satcher, J.H., Baumann, T.F.: Synthesis and characterization of monolithic carbon aerogel composites containing doubled-walled carbon nanotubes. Langmuir. 24, 9763–9766 (2008)

    CAS  Google Scholar 

  122. Worsley, M.A., Satcher, J.H., Baumann, T.F.: Enhanced thermal transport in carbon aerogel nanocomposites containing double-walled carbon nanotubes. J. Appl. Phys. 105, 1–5 (2009)

    Google Scholar 

  123. Haghgoo, M., Yousefi, A.A., Zohouriaan, M., Mohammad, J., Celzard, A., Fierro, V., Leonard, A.F., Leonard, A., Job, N.: Characterization of multi-walled carbon nanotube dispersion in resorcinol-formaldehyde aerogels. Microporous Mesoporous Mater. 184, 97–104 (2014)

    CAS  Google Scholar 

  124. Bekyarova, E., Kaneko, K.: Structure and physical properties of tailor-made Ce, Zr-doped carbon aerogels. Adv. Mater. 12, 1625–1628 (2000)

    CAS  Google Scholar 

  125. Baumann, T., Fox, G., Satcher, J., Yoshizawa, N., Fu, R., Dresselhaus, M.: Synthesis and characterization of copper-doped carbon aerogels. Langmuir. 18, 7073–7076 (2002)

    CAS  Google Scholar 

  126. Baumann, T., Worsley, M., Han, T., Satcher, J.: High surface area carbon aerogel monoliths with hierarchical porosity. J. Non-Cryst. Solids. 354, 3513–3515 (2008)

    CAS  Google Scholar 

  127. Baumann, T., Satcher, J.: Homogeneous incorporation of metal nanoparticles into ordered macroporous carbons. Chem. Mater. 15, 3745–3747 (2003)

    CAS  Google Scholar 

  128. Maldonado-Hodar, F., Perez-Cadenas, A., Moreno-Castilla, C.: Morphology of heat – treated tungsten doped monolithic carbon aerogels. Carbon. 41, 1291–1299 (2003)

    CAS  Google Scholar 

  129. Job, N., Pirard, R., Marien, J., Pirard, J.: Synthesis of transition metal-doped carbon xerogels by solubilization of metal salts in resorcinol-formaldehyde aqueous solution. Carbon. 42, 3217–3227 (2004)

    CAS  Google Scholar 

  130. Maldonado-Hodar, F., Ferro-Garcia, M., Rivera-Utrilla, J., Moreno-Castilla, C.: Synthesis and textural characteristics of organic aerogels, transition metal-containing organic aerogels, and their carbonized derivatives. Carbon. 37, 1199–1205 (1999)

    CAS  Google Scholar 

  131. Leventis, N., Chandrasekaran, N., Sotiriou-Leventis, C., Mumtaz, A.: Smelting in the age of nano: iron aerogels. J. Mater. Chem. 19, 63–65 (2009)

    CAS  Google Scholar 

  132. Moreno-Castilla, C., Maldonado-Hodar, F.: Carbon aerogels for catalysis applications: an overview. Carbon. 43, 455–465 (2005)

    CAS  Google Scholar 

  133. Job, N., Pirard, R., Vertruyen, B., Colomer, J., Marien, J., Pirard, J.: Synthesis of transition metal-doped carbon xerogels by cogelation. J. Non-Cryst. Solids. 353, 2333–2345 (2007)

    CAS  Google Scholar 

  134. Fu, R., Baumann, T., Cronin, S., Dresselhaus, G., Dresselhaus, M., Satcher, J.: Formation of graphitic structures in cobalt- and nickel-doped carbon aerogels. Langmuir. 21, 2647–2651 (2005)

    CAS  Google Scholar 

  135. Steiner III, S.A., Baumann, T.F., Kong, J., Satcher Jr., J.H., Dresselhaus, M.S.: Iron-doped carbon aerogels: novel porous substrates for direct growth of carbon nanotubes. Langmuir. 23(9), 5161–5166 (2007)

    CAS  Google Scholar 

  136. Steiner III, S.A., Baumann, T.F., Bayer, B.C., Blume, R., Worsley, M.A., Moberly Chan, W.J., Shaw, E.L., Schloegl, R., Hart, A.J., Hofmann, S., Wardle, B.L.: Nanoscale zirconia as a non-metallic catalyst for graphitization of carbon and growth of single- and multiwall carbon nanotubes. J. Am. Chem. Soc. 131, 12144–12154 (2009)

    CAS  Google Scholar 

  137. Kudo, A., Steiner III, S.A., Bayer, B.C., Kidambi, P.R., Hofmann, S., Strano, M.S., Wardle, B.L.: CVD growth of carbon nanostructures from zirconia: mechanisms and a method for enhancing yield. J. Am. Chem. Soc. 136, 17808–17817 (2014)

    CAS  Google Scholar 

  138. Steiner III, S.A.: Engineering carbon nanostructures: development of novel aerogel-nanotube composites and optimization techniques for nanotube growth. SM Thesis, Massachusetts Institute of Technology (2006). http://hdl.handle.net/1721.1/36216. Last accessed 21 June 2020

    Google Scholar 

  139. Attia, S.M., Sharshar, T., Abd-Elwahed, A.R., Tawfik, A.: Study of transport properties and conduction mechanism of pure and composite resorcinol formaldehyde aerogel doped with co-ferrite. Mater. Sci. Eng. B. 178, 897–910 (2013)

    CAS  Google Scholar 

  140. Sanchez-Polo, M., Rivera-Utrilla, J., Mendez-Diaz, J., Lopez-Penalver, J.: Metal-doped carbon aerogels new materials for water treatments. Ind. Eng. Chem. Res. 47, 6001–6005 (2008)

    CAS  Google Scholar 

  141. Leventis, N., Donthula, S., Mandal, C., Ding, M.S., Sotiriou-Leventis, C.: Explosive versus thermite behavior in iron (0) aerogels infiltrated with perchlorates. Chem. Mater. 27, 8126–8137 (2015)

    CAS  Google Scholar 

  142. Berthon-Fabry, S., Hildenbrand, C., Ilbizian, P.: Lightweight superinsulating resorcinol-formaldehyde-APTES benzoxazine aerogel blankets for space applications. Eur. Polym. J. 78, 25–37 (2016)

    CAS  Google Scholar 

  143. Berthon-Fabry, S., Hildenbrand, C., Ilbizian, P., Jones, E., Tavera, S.: Evaluation of lightweight and flexible insulating aerogel blankets based on resorcinol-formaldehyde-silica for space applications. Eur. Polym. J. 93, 403–416 (2017)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chariklia Sotiriou-Leventis or Nicholas Leventis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sotiriou-Leventis, C., Leventis, N., Mulik, S. (2023). Phenolic Aerogels and Their Carbonization. In: Aegerter, M.A., Leventis, N., Koebel, M., Steiner III, S.A. (eds) Springer Handbook of Aerogels. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-27322-4_20

Download citation

Publish with us

Policies and ethics