Skip to main content

Ecotoxicological Studies of Metal Pollution in Sea Turtles of Latin America

  • Chapter
  • First Online:
Pollution of Water Bodies in Latin America

Abstract

Anthropogenic input of chemical pollutants into the marine environment has led to substantial increases in the concentrations of naturally occurring trace metals. Related to this there is a growing concern regarding the occurrence of these elements in marine organisms and their hazard potential. In Latin America six of seven sea turtle species inhabit the coastal areas, and many studies evaluated the concentrations of metals in blood, tissues, eggs, and hatchlings of these animals. However, information for many countries is still unknown. Considering the results from all studies, a clear organotropism is found with higher levels of Cu, Mn, Pb, and Hg in the liver and Cd and As in the kidney. In blood, the highest concentration of Cd was from Mexican Lepidochelys olivacea. Chelonia mydas from Brazil showed the highest Pb and As levels, while Eretmochelys imbricata had the highest concentration of Hg. In eggs, the highest load of metals was incorporated in the yolk. Some publications correlated the contaminant levels with biochemical parameters, oxidative stress, and diseases. This chapter is a review of the available toxicological research and the biomarkers used as indicators of metal exposure in sea turtles from Latin America.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdallah MAM, Abd-Allah MAM (2011) Bioaccumulation of toxic metals in loggerhead turtles from Mediterranean Sea coast, Egypt. In: Özhan E (ed). Proc 10th Int Conf on the Mediterannean Coastal Environment, MEDCOAST, Rhodes, Greece, pp 569–580

    Google Scholar 

  • Aguirre AA, Lutz PL (2004) Marine turtles as sentinels of ecosystem health: is fibropapillomatosis an indicator? EcoHealth 1:275–283

    Google Scholar 

  • Aguirre AA, Balazs GH, Zimmerman B et al (1994) Organic contaminants and trace metals in the tissues of green turtles (Chelonia mydas) afflicted with fibropapillomas in the Hawaiian Islands. Mar Pollut Bull 28(2):109–114

    CAS  Google Scholar 

  • Álvarez-Varas R, Contardo J, Heidemeyer M et al (2017) Ecology, health and genetic characterization of the southernmost green turtle (Chelonia mydas) aggregation in the eastern Pacific: implications for local conservation strategies. Lat Am J Aquat Res 45(3):540–554

    Google Scholar 

  • Anan Y, Kunito T, Watanabe I et al (2001) Trace element accumulation in hawksbill turtles (Eretmochelys imbricata) and green turtles (Chelonia mydas) from Yaeyama Islands, Japan. Environ Toxicol Chem 20(12):2802–2814

    CAS  PubMed  Google Scholar 

  • Anan Y, Kunito T, Sakai H et al (2002) Subcellular distribution of trace elements in the liver of sea turtles. Mar Pollut Bull 45:224–229

    CAS  PubMed  Google Scholar 

  • Andreani G, Santoro M, Cottignoli S et al (2008) Metal distribution and metallothionein in loggerhead (Caretta caretta) and green (Chelonia mydas) sea turtles. Sci Total Environ 390:287–294

    CAS  PubMed  Google Scholar 

  • Athar M, Vohora S (1995) Heavy metals and environment. New Age International Publishers Ltd, Wiley Eastern Ltd, New Delhi, 216p

    Google Scholar 

  • Balazs GH (1991) Current status of fibropapillomas in the Hawaiian green turtle, Chelonia mydas. In: Balazs GH, Pooley SG (eds) Research plan for marine turtle fibropapilloma. US Department of Commerce NOAA Technical Memorandum, Honolulu, pp 47–57

    Google Scholar 

  • Barbieri E (2009) Concentration of heavy metals in tissues of green turtles (Chelonia mydas) sampled in the Cananéia Estuary, Brazil. Braz J Oceanogr 57(3):243–248

    Google Scholar 

  • Bardales FAL, Benavides MGQ (2016) Determinación de concentraciones de metales pesados en sangre de hembras anidantes de tortugas carey (Eretmocheys imbricata) en la Bahía de Jiquilisco, Departamento de Usulután, El Salvador. Bachelor Thesis, Universidad de El Salvador, 101p

    Google Scholar 

  • Bezerra MF, Lacerda LD, Costa BGB, Lima EHSM (2012) Mercury in the sea turtle Chelonia mydas (Linnaeus, 1958) from Ceará coast, NE Brazil. An Acad Bras Cienc 84(1):123–128

    CAS  PubMed  Google Scholar 

  • Bezerra MF, Lacerda LD, Lima EHSM et al (2013) Monitoring mercury in green sea turtles using keratinized carapace fragments (scutes). Mar Pollut Bull 77:424–427

    CAS  PubMed  Google Scholar 

  • Bezerra MF, Lacerda LD, Rezende CE et al (2015) Food preferences and Hg distribution in Chelonia mydas assessed by stable isotopes. Environ Pollut 206:236–246

    CAS  PubMed  Google Scholar 

  • Bishop C, Brooks RJ, Carey JH et al (1991) The case for a cause-effect between environmental contamination and development in eggs of the common snapping turtle (Chelydras. serpentine) from Ontario, Canada. J Toxicol Environ Health 33:5121–5547

    Google Scholar 

  • Bishop CA, Ng P, Pettit KE et al (1998) Environmental contamination and developmental abnormalities in eggs and hatchlings of the common snapping turtle (Chelydra serpentina serpentina) from the Great Lakes-St Lawrence River basin (1989-1991). Environ Poll 101:143–156

    CAS  Google Scholar 

  • Bjorndal KA, Bolten AB (1989) Comparison of straight-line and over-the-curve measurements for growth rates of green turtles, Chelonia mydas. Bull Mar Sci 45:189–192

    Google Scholar 

  • Bjorndal KA, Bolten AB, Martins HR (2000) Somatic growth model of juvenile loggerhead sea turtles Caretta caretta: duration of pelagic stage. Mar Ecol Prog Ser 202:265–272

    Google Scholar 

  • Camacho M, Orós J, Boada LD (2013) Potential adverse effects of inorganic pollutants on clinical parameters of loggerhead sea turtles (Caretta caretta): results from a nesting colony from Cape Verde, West Africa. Mar Environ Res 92:15–22

    CAS  PubMed  Google Scholar 

  • Camacho M, Orós J, Henríquez-Hernández LA et al (2014) Influence of the rehabilitation of injured loggerhead turtles (Caretta caretta) on their blood levels of environmental organic pollutants and elements. Sci Total Environ 487:436–442

    CAS  PubMed  Google Scholar 

  • Canas JE, Anderson TA (2002) Organochlorine contaminants in eggs: the influence of contaminated nest material. Chemosphere 47:585–589

    CAS  PubMed  Google Scholar 

  • Cortés-Gomes AA, Romero D, Girondot M (2017) The current situation of inorganic elements in marine turtles: a general review and meta-analysis. Environ Pollut 229:567–585

    Google Scholar 

  • Cortés-Gómez AA, Fuentes-Mascorro G, Romero D (2014) Metals and metalloids in whole blood and tissues of Olive Ridley turtles (Lepidochelys olivacea) from La Escobilla Beach (Oaxaca, Mexico). Mar Pollut Bull 89(1–2):367–375

    PubMed  Google Scholar 

  • Cortés-Gómez AA, Tvarijonaviciute A, Teles M et al (2017) p-Nitrophenyl acetate esterase activity and cortisol as biomarkers of metal pollution in blood of olive ridley turtles (Lepidochelys olivacea). Arch Environ Contam Toxicol 75(1):25–36

    PubMed  Google Scholar 

  • Cortés-Gómez AA, Tvarijonaviciute A, Girondot M et al (2018a) Relationship between plasma biochemistry values and metal concentrations in nesting olive ridley sea turtles. Environ Sci Pollut Res 36:36671–36679

    Google Scholar 

  • Cortés-Gómez AA, Morcillo P, Guardiola FA et al (2018b) Molecular oxidative stress markers in olive ridley turtles (Lepidochelys olivacea) and their relation to metal concentrations in wild populations. Environ Pollut 233:156–167

    PubMed  Google Scholar 

  • Cortés-Gómez AA, Romero D, Girondot M (2018c) Carapace asymmetry: a possible biomarker for metal accumulation in adult olive ridleys marine turtles? Mar Pollut Bull 129:92–101

    PubMed  Google Scholar 

  • Day RD, Christopher SJ, Becker PR et al (2005) Monitoring mercury in the loggerhead sea turtle, Caretta caretta. Environ Sci Technol 39:437–446

    CAS  PubMed  Google Scholar 

  • Dyc C, Covaci A, Debier C et al (2015) Pollutant exposure in green and hawksbill marine turtles from the Caribbean region. Reg Stud Mar Sci 2:158–170

    Google Scholar 

  • Fraga NS, Martins AS, Faust DR et al (2018) Cadmium in tissues of green turtles (Chelonia mydas): a global perspective for marine biota. Sci Total Environ 637–638:389–397

    PubMed  Google Scholar 

  • Frías-Espericueta MG, Osuna-López JI, Ruiz-Telles A et al (2006) Heavy metals in the tissues of the sea turtle Lepidochelys olivacea from a nesting site of the Northwest Coast of Mexico. Bull Environ Contam Toxicol 77:179–185

    PubMed  Google Scholar 

  • Garcia-Fernandez AJ, Gomez-Ramirez P, Martinez-Lopez E et al (2009) Heavy metals in tissues from loggerhead turtles (Caretta caretta) from the southwestern Mediterranean (Spain). Ecotox Environ Safe 72(2):557–563

    CAS  Google Scholar 

  • Gardner SC, Fitzgerald SL, Vargas BA, Rodríguez LM (2006) Heavy metal accumulation in four species of sea turtles from the Baja California Peninsula, Mexico. Biometals 19:91–99

    CAS  PubMed  Google Scholar 

  • Gilman E, Zollett E, Beverly S et al (2007) Reducing sea turtle bycatch in pelagic longline fisheries. Fish Fish 7:1–22

    Google Scholar 

  • Guirlet E, Dasb K, Girondot M (2008) Maternal transfer of trace elements in leatherback turtles (Dermochelys coriacea) of French Guiana. Aquat Toxicol 88:267–276

    CAS  PubMed  Google Scholar 

  • Hewavisenthi S, Parmenter CJ (2001) Influence of incubation environment on the development of the flatback turtle (Natator depressus). Copeia 2001:668–682

    Google Scholar 

  • IUCN (2019) Red list of threatened species. https://www.iucnredlist.org. Accessed 27 Jan 2019

  • Kampalath R, Gardner SC, Méndez-Rodríguez L et al (2006) Total and methylmercury in three species of sea turtles of Baja California Sur. Mar Pollut Bull 52:1784–1832

    Google Scholar 

  • Keller JM, Peden-Adams MM, Aguirre AA (2006) Immunotoxicology and implications for reptilian health. In: Gardner SC, Oberdörster E (eds) Toxicology of reptiles. Taylor & Francis, Boca Raton, pp 199–240

    Google Scholar 

  • Keller JM, Pugh RS, Becker PR (2014) Biological and environmental monitoring and archival of sea turtle tissues (BEMAST): rationale, protocols, and initial collections of banked sea turtle tissues. National Institute of Standards and Technology, Gaithersburg, 76p

    Google Scholar 

  • Labrada-Martagón V, Rodríguez PAT, Méndez-Rodríguez LC et al (2011) Oxidative stress indicators and chemical contaminants in East Pacific green turtles (Chelonia mydas) inhabiting two foraging coastal lagoons in the Baja California Peninsula. Comp Biochem Physiol C Toxicol Pharmacol 154:65–75

    PubMed  Google Scholar 

  • Lam JC, Tanabe S, Chan SK et al (2004) Trace element residues in tissues of green turtles (Chelonia mydas) from South China waters. Mar Pollut Bull 48:174–182

    CAS  PubMed  Google Scholar 

  • Ley-Quiñónez C, Zavala-Norzagaray AA, Espinosa-Carreón TL et al (2011) Baseline heavy metals and metalloid values in blood of loggerhead turtles (Caretta caretta) from Baja California Sur, Mexico. Mar Pollut Bull 62:1979–1983

    PubMed  Google Scholar 

  • Ley-Quiñónez CP, Zavala-Norzagaray AA, Réndon-Maldonado JG et al (2013) Selected heavy metals and selenium in the blood of black sea turtle (Chelonia mydas agassizii) from Sonora, Mexico. Bull Environ Contam Toxicol 91:645–651

    PubMed  Google Scholar 

  • Ley-Quiñónez CP, Rossi-Lafferriere NA, Espinoza-Carreon TL et al (2017) Associations between trace elements and clinical health parameters in the North Pacific loggerhead sea turtle (Caretta caretta) from Baja California Sur, Mexico. Environ Sci Pollut Res 24(10):9530–9537

    Google Scholar 

  • Livingstone DR (1993) Biotechnology and pollution monitoring: use of molecular biomarker in the aquatic environment. J Chem Technol Biotechnol 57:195–211

    CAS  Google Scholar 

  • Macêdo GR, Tarantino TB, Barbosa IS et al (2015) Trace elements distribution in hawksbill turtle (Eretmochelys imbricata) and green turtle (Chelonia mydas) tissues on the northern coast of Bahia, Brazil. Mar Pollut Bull 94(1–2):284–289

    PubMed  Google Scholar 

  • Marcovaldi MA, Sales G, Thome JC et al (2006) Sea turtle interactions in Brazil: identifying and mitigating potential conflicts. Mar Turt Newsl 112:4–8

    Google Scholar 

  • Miller JD (1997) Reproduction in sea turtles. In: Lutz PL, Musick JA (eds) The biology of sea turtles. CRC Press, Boca Raton, pp 51–82

    Google Scholar 

  • Páez-Osuna F, Calderón-Campuzano MF, Soto-Jiménez MF et al (2010a) Lead in blood and eggs of the sea turtle, Lepidochelys olivacea, from the Eastern Pacific: concentration, isotopic composition and maternal transfer. Mar Pollut Bull 60:433–439

    PubMed  Google Scholar 

  • Páez-Osuna F, Calderón-Campuzano MF, Soto-Jiménez M et al (2010b) Trace metals (Cd, Cu, Ni, and Zn) in blood and eggs of the sea turtle Lepidochelys olivacea from a nesting colony of Oaxaca, Mexico. Arch Environ Contam Toxicol 59:632–641

    PubMed  Google Scholar 

  • Páez-Osuna F, Calderón-Campuzano MF, Soto-Jiménez MF et al (2011) Mercury in blood and eggs of the sea turtle Lepidochelys olivacea from a nesting colony in Oaxaca, Mexico. Mar Pollut Bull 62:1320–1323

    PubMed  Google Scholar 

  • Palmer BD, Demarco VG, Guillette LJ (1993) Oviductal morphology and eggshell formation in the lizard Sceloporus woodi. J Morphol 217:205–217

    PubMed  Google Scholar 

  • Prioste FES (2016) Detection and quantification of selected inorganic chemical elements in blood and tissue samples from green turtles – Chelonia mydas (Linnaeus, 1758) – from the Brazilian coast: possible correlation with fibropapillomatosis. Thesis, Universidade de São Paulo, 115p

    Google Scholar 

  • Prioste FES, Souza VCO, Queiroz MR et al (2015) Chemical element concentrations in the blood of green turtles (Chelonia mydas) captured at Fernando De Noronha Marine National Park, Brazil. J Environ Anal Toxicol 5:325

    Google Scholar 

  • Rodriguez CAB (2017) Mercúrio e metil mercúrio em carapaça da tartaruga marinha Caretta caretta (Linnaeus, 1758), no nordeste do Brasil, e seu uso potencial em monitoramento ambiental. Dissertation, Universidade Federal do Ceará, 57p

    Google Scholar 

  • Rodriguez CAB, Bezerra MF, Lacerda LD (2018) Use of carapace for monitoring mercury in two species of sea turtles in northeast of Brazil. Arq Ciên Mar, Fortaleza 51(1):93–100

    Google Scholar 

  • Roe JH, Sill NS, Columbia MR et al (2011) Trace metals in eggs and hatchlings of pacific leatherback turtles (Dermochelys coriacea) nesting at Playa Grande, Costa Rica. Chelonian Conserv Biol 10(1):3–9

    Google Scholar 

  • Ross DA, Guzmán HM, Hinsberg VJV, Potvin C (2016) Metal contents of marine turtle eggs (Chelonia mydas; Lepidochelys olivacea) from the tropical eastern pacific and the implications for human health. J Environ Sci Health B 10:675–687

    Google Scholar 

  • Ross DA, Guzman HM, Potvin C et al (2017) A review of toxic metal contamination in marine turtle tissues and its implications for human health. Reg Stud Mar Sci 15:1–9

    Google Scholar 

  • Russell RW, Gobas F, Haffner GD (1999) Maternal transfer and in ovo exposure of organochlorines in oviparous organisms: a model and field verification. Environ Sci Technol 33:416–420

    CAS  Google Scholar 

  • Sakai H, Saeki K, Ichihashi H et al (2000) Species-specific distribution of heavy metals in tissues and organs of Loggerhead turtle (Caretta caretta) and Green turtle (Chelonia mydas) from Japanese Coastal Waters. Mar Pollut Bull 40:701–709

    CAS  Google Scholar 

  • Silva LM (2011) Metais pesados em tecidos de Chelonia mydas encalhadas no litoral do Rio Grande do Sul, Brasil. Bachelor Thesis, Universidade Federal do Rio Grande do Sul, 40p

    Google Scholar 

  • Silva CC, Varela AS, Barcarolli IB, Bianchini A (2014) Concentrations and distributions of metals in tissues of stranded green sea turtles (Chelonia mydas) from the southern Atlantic coast of Brazil. Sci Total Environ 466–467:109–118

    PubMed  Google Scholar 

  • Silva CC, Klein RD, Barcarolli IF et al (2016) Metal contamination as a possible etiology of fibropapillomatosis in juvenile female green sea turtles Chelonia mydas from the southern Atlantic Ocean. Aquat Toxicol 170:42–51

    PubMed  Google Scholar 

  • Simões TN (2016) Metais pesados em sedimento, cascas de ovos e sangue de tartarugas marinhas da espécie Eretmochelys imbricata (Linnaeus, 1766). Dissertation, Universidade Federal de Pernambuco, 79p

    Google Scholar 

  • Southwood AL, Andrews RD, Paladino FV et al (2005) Effects of diving and swimming behavior on body temperatures of Pacific leatherback turtles in tropical seas. Physiol Biochem Zool 78:285–297

    CAS  PubMed  Google Scholar 

  • Storelli MM, Storelli A, D'Addabbo R et al (2005) Trace elements in loggerhead turtles (Caretta caretta) from the eastern Mediterranean Sea: overview and evaluation. Environ Pollut 135(1):163–170

    CAS  PubMed  Google Scholar 

  • Talavera-Saenz A, Gardner SC, Rodriquez RR et al (2007) Metal profiles used as environmental markers of Green Turtle (Chelonia mydas) foraging resources. Sci Total Environ 373:94–102

    CAS  PubMed  Google Scholar 

  • Tauer AM, Liles MJ, Chavarría S et al. (2017) Hematology, biochemistry, and toxicology of wild hawksbill turtles (Eretmochelys imbricata) nesting in mangrove estuaries in the eastern Pacific Ocean. BioRxiv 238956

    Google Scholar 

  • Vazquez GF, Reyes MC, Fernandez G et al (1997) Contamination in marine turtle (Dermochelys coriacea) egg shells of Playon de Mexiquillo, Michoacan, Mexico. Bull Environ Contam Toxicol 58:326–333

    CAS  PubMed  Google Scholar 

  • Wabnitz C, Pauly D (2008) Length-weight relationships and additional growth parameters for sea turtles. Fish Cent Res Rep 16:92–101

    Google Scholar 

  • Wallace BP, Sotherland PR, Tomillo PS et al (2006) Egg components, egg size, and hatchling size in leatherback turtles. Comp Biochem Physiol Mol Integr Physiol 145:524–532

    Google Scholar 

  • Whiting SD, Long JL, Hadden KM et al (2007) Insights into size, seasonality and biology of a nesting population of the Olive Ridley turtle in northern Australia. Wildl Res 34:200–210

    Google Scholar 

  • Zavala-Norzagaray AA, Ley-Quiñónez CP, Espinosa-Carreón TL et al (2014) Trace elements in blood of sea turtles Lepidochelys olivacea in the Gulf of California, Mexico. Bull Environ Contam Toxicol 93:536–541

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camila Miguel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miguel, C., de Deus Santos, M.R. (2019). Ecotoxicological Studies of Metal Pollution in Sea Turtles of Latin America. In: Gómez-Oliván, L. (eds) Pollution of Water Bodies in Latin America. Springer, Cham. https://doi.org/10.1007/978-3-030-27296-8_9

Download citation

Publish with us

Policies and ethics