Skip to main content

Motion-Augmented Inference and Joint Kernels in Structured Learning for Object Tracking

  • Conference paper
  • First Online:
Image Analysis and Recognition (ICIAR 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11662))

Included in the following conference series:

Abstract

This paper proposes an object tracking method, where we first predict target dynamics by harmonic means and particle filter in which we exploit kernel machines to derive a new entropy-based observation likelihood distribution. We then employ online Structured SVMs (Structured SVMs) to model object appearance, where we analyze responses of several kernel functions for various feature descriptors and study how such kernels can be optimally combined to formulate a single joint kernel function. We gain efficiency improvements by (1) exploiting particle filter for sampling the search space instead of commonly adopted dense sampling strategies, and (2) introducing a motion-augmented regularization term during inference to constrain the output search space. We objectively demonstrate that our method strongly competes against state-of-the-art structured object tracking methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 50, 174–188 (2002)

    Article  Google Scholar 

  2. Bao, C., Wu, Y., Ling, H., Ji, H.: Real time robust \(l_1\) tracker using accelerated proximal gradient approach. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1830–1837 (2012)

    Google Scholar 

  3. Bordes, A., Bottou, L., Gallinari, P., Weston, J.: Solving multiclass support vector machines with LaRank. In: International Conference on Machine Learning, pp. 89–96 (2007)

    Google Scholar 

  4. Cai, Y., Wang, H., Chen, X., Chen, L.: Multilevel framework to handle object occlusions for real-time tracking. IET Image Process. 10(11), 885–892 (2016)

    Article  Google Scholar 

  5. Doucet, A., Godsill, S., Andrieu, C.: On sequential monte carlo sampling methods for Bayesian filtering. Stat. Comput. 10(3), 197–208 (2000)

    Article  Google Scholar 

  6. Gordon, N., Salmond, D., Smith, A.: Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IET Radar Signal Proc. 140(2), 107–113 (1993)

    Article  Google Scholar 

  7. Hare, S., et al.: Struck: structured output tracking with kernels. IEEE Trans. PAMI 38(10), 2096–2109 (2016)

    Article  Google Scholar 

  8. Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: Exploiting the circulant structure of tracking-by-detection with kernels. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 702–715. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33765-9_50

    Chapter  Google Scholar 

  9. Hu, W., Gao, J., Xing, J., Zhang, C., Maybank, S.: Semi-supervised tensor-based graph embedding learning and its application to visual discriminant tracking. IEEE Trans. Pattern Anal. Mach. Intell. PP(99), 1 (2016)

    Google Scholar 

  10. Jia, X., Lu, H., Yang, M.H.: Visual tracking via adaptive structural local sparse appearance model. In: IEEE Conference on CVPR, pp. 1822–1829 (2012)

    Google Scholar 

  11. Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1409–1422 (2012)

    Article  Google Scholar 

  12. Kang, B., Zhu, W., Liang, D.: Robust multi-feature visual tracking via multi-task kernel-based sparse learning. IET Image Process. 11(12), 1172–1178 (2017)

    Article  Google Scholar 

  13. Platt, J.: Fast training of support vector machines using sequential minimal optimization. In: Advances in Kernel Methods-Support Vector Learning, vol. 3 (1999)

    Google Scholar 

  14. Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large margin methods for structured and interdependent output variables. J. Mach. Learn. Res. 6, 1453–1484 (2005)

    MathSciNet  MATH  Google Scholar 

  15. Wu, Y., Lim, J., Yang, M.H.: Online object tracking: a benchmark. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2411–2418 (2013)

    Google Scholar 

  16. Zhong, W., Lu, H., Yang, M.H.: Robust object tracking via sparsity-based collaborative model. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1838–1845 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria A. Amer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ratnayake, K., Amer, M.A. (2019). Motion-Augmented Inference and Joint Kernels in Structured Learning for Object Tracking. In: Karray, F., Campilho, A., Yu, A. (eds) Image Analysis and Recognition. ICIAR 2019. Lecture Notes in Computer Science(), vol 11662. Springer, Cham. https://doi.org/10.1007/978-3-030-27202-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27202-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27201-2

  • Online ISBN: 978-3-030-27202-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics