Skip to main content

Oxygen Evolution Reaction

  • Chapter
  • First Online:
Methods for Electrocatalysis

Abstract

Oxygen evolution reaction is evinced as one of the main rate-determining steps for clean energy production, energy security supply and therefore for the evolution of a sustainable society. The production of clean energy, the security of energy supply (autonomy) and lower cost of energy supply constitute the main key points for a sustainable future. It is known, that a sustainable future can be achieved only if the current power supply shifts to other sources than the conventional ones; with the renewable energy sources and hydrogen fuel to own a leading role. The oxygen evolution reaction mechanism in acidic and alkaline media remains a mystery even today, after so many years of research activities. Bockris in 1954 and then Bockris and Huq in 1956 were the initial founders of the oxygen evolution reaction mechanism study. Then, many mechanisms were suggested and up-to-date many materials have been studied, with the metal perovskite oxides to be the most promising candidates. When this ‘mystery’ is solved, then a big step towards a sustainable future will become.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chapman A, Itaoka K, Hirose K, Davidson FT, Nagasawa K, Lloyd AC, Webber ME, Kurban Z, Managi S, Tamaki T (2019) A review of four case studies assessing the potential for hydrogen penetration of the future energy system. Int J Hydrogen Energy

    Google Scholar 

  2. Jing S, Zhang Y, Chen F, Liang H, Yin S, Tsiakaras P (2019) Novel and highly efficient cathodes for Li-O2 batteries: 3D self-standing NiFe@NC-functionalized N-doped carbon nanonet derived from Prussian blue analogues/biomass composites. Appl Catal B 245:721–732

    Article  CAS  Google Scholar 

  3. Maggio G, Nicita A, Squadrito G (2018) How the hydrogen production from RES could change energy and fuel markets. A review of recent literature. In: Transforming energy markets, 41st IAEE international conference, 10–13 June 2018. International Association for Energy Economics

    Google Scholar 

  4. Godula-Jopek A, Stolten D (2015) Hydrogen production: by electrolysis. Wiley, Germany

    Google Scholar 

  5. Zu C-X, Li H (2011) Thermodynamic analysis on energy densities of batteries. Energy Environ Sci 4:2614–2624

    Article  CAS  Google Scholar 

  6. Lu C-T, Chiu Y-W, Li M-J, Hsueh K-L, Hung J-S (2017) Reduction of the electrode overpotential of the oxygen evolution reaction by electrode surface modification. Int J Electrochem

    Google Scholar 

  7. Wendt H, Kreysa G (2013) Electrochemical engineering: science and technology in chemical and other industries. Springer, Berlin Heidelberg, Germany

    Google Scholar 

  8. Pera MC, Hissel D, Gualous H, Turpin C (2013) Electrochemical components. Wiley, USA

    Book  Google Scholar 

  9. Fabbri E, Schmidt TJ (2018) Oxygen evolution reaction—the enigma in water electrolysis. ACS Publications

    Google Scholar 

  10. Casselberry E, Edgerton NH (1874) Electrolytic apparatus. USA patent application

    Google Scholar 

  11. Bockris JM (1954) Modern aspects of electrode kinetics. Annu Rev Phys Chem 5:477–500

    Article  CAS  Google Scholar 

  12. Bockris JOM, Shamshul Huq A (1956) The mechanism of the electrolytic evolution of oxygen on platinum. Proc R Soc London Ser A Math Phys Sci 237:277–296

    Article  CAS  Google Scholar 

  13. Wade WH, Hackerman N (1957) Anodic phenomena at an iron electrode. Trans Faraday Soc 53:1636–1647

    Article  CAS  Google Scholar 

  14. Conway B, Bourgault P (1959) The electrochemical behavior of the nickel–nickel oxide electrode: Part I. Kinetics of self-discharge. Can J Chem 37:292–307

    Article  CAS  Google Scholar 

  15. Krasilshchikov AI (1963) Intermediate stages of anodic oxygen evolution. Russ J Phys Chem 37:273

    Google Scholar 

  16. Tsinman AI (1963) Zh. Fiz. Khim 37:273

    Google Scholar 

  17. Sato N, Okamoto G (1965) Reaction mechanism of anodic oxygen evolution on nickel in sulphate solutions. Electrochim Acta 10:495–502

    Article  CAS  Google Scholar 

  18. Damjanovic A, Jovanovic B (1976) Anodic oxide films as barriers to charge transfer in O2 evolution at Pt in acid solutions. J Electrochem Soc 123:374–381

    Article  CAS  Google Scholar 

  19. Hoare JP (1975) J Phys Chem 79:2175

    Article  CAS  Google Scholar 

  20. O’ Grady W, Iwakura C, Hnang J, Yeager E (1976) In: Breiter MW (ed) Proceedings of the symposium on Efecrrocaralysis, Princeton. ECS, pp 286–301

    Google Scholar 

  21. O’Grady W, Iwakura C, Yeager E (1976) American Society of Mechanical Engineers 76-ENAS-37

    Google Scholar 

  22. Miles M, Klaus E, Gunn B, Locker J, Serafin W, Srinivasan S (1978) The oxygen evolution reaction on platinum, iridium, ruthenium and their alloys at 80 °C in acid solutions. Electrochim Acta 23:521–526

    Article  CAS  Google Scholar 

  23. Bronoel G, Reby J (1980) Mechanism of oxygen evolution in basic medium at a nickel electrode. Electrochim Acta 25:973–976

    Article  CAS  Google Scholar 

  24. Bockris JOM, Otagawa T (1983) Mechanism of oxygen evolution on perovskites. J Phys Chem 87:2960–2971

    Article  CAS  Google Scholar 

  25. Wohlfahrt-Mehrens M, Heitbaum J (1987) Oxygen evolution on Ru and RuO2 electrodes studied using isotope labelling and on-line mass spectrometry. J Electroanal Chem Interfacial Electrochem 237:251–260

    Article  CAS  Google Scholar 

  26. Matsumoto Y, Sato E (1986) Electrocatalytic properties of transition metal oxides for oxygen evolution reaction. Mater Chem Phys 14:397–426

    Article  CAS  Google Scholar 

  27. Surendranath Y, Kanan MW, Nocera DG (2010) Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH. J Am Chem Soc 132:16501–16509

    Article  CAS  Google Scholar 

  28. Wang H, Lee H-W, Deng Y, Lu Z, Hsu P-C, Liu Y, Lin D, Cui Y (2015) Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nat Commun 6:7261

    Article  CAS  Google Scholar 

  29. Binninger T, Mohamed R, Waltar K, Fabbri E, Levecque P, Kötz R, Schmidt TJ (2015) Thermodynamic explanation of the universal correlation between oxygen evolution activity and corrosion of oxide catalysts. Sci Rep 5:12167

    Article  CAS  Google Scholar 

  30. Fabbri E, Nachtegaal M, Binninger T, Cheng X, Kim B-J, Durst J, Bozza F, Graule T, Schäublin R, Wiles L (2017) Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting. Nat Mater 16:925

    Article  CAS  Google Scholar 

  31. Chen D, Chen C, Baiyee ZM, Shao Z, Ciucci F (2015) Nonstoichiometric oxides as low-cost and highly-efficient oxygen reduction/evolution catalysts for low-temperature electrochemical devices. Chem Rev 115:9869–9921

    Article  CAS  Google Scholar 

  32. Suntivich J, May KJ, Gasteiger HA, Goodenough JB, Shao-Horn Y (2011) A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334(6061):1383–1385

    Google Scholar 

  33. Zhang W, Zhou K (2017) Ultrathin two-dimensional nanostructured materials for highly efficient water oxidation. Small 13:1700806

    Article  CAS  Google Scholar 

  34. Li X, Liu H, Chen Z, Wu Q, Yu Z, Yang M, Wang X, Cheng Z, Fu Z, Lu Y (2019) Enhancing oxygen evolution efficiency of multiferroic oxides by spintronic and ferroelectric polarization regulation. Nat Commun 10:1409

    Article  CAS  Google Scholar 

  35. Li J, Chen H, Liu Y, Gao R, Zou X (2019) In situ structural evolution of a nickel boride catalyst: synergistic geometric and electronic optimization for the oxygen evolution reaction. J Mater Chem A 7:5288–5294

    Article  CAS  Google Scholar 

  36. Gu W, Li X, Zhang W, Wang J, Yin X, Zhu L, Chen Z, Zou W, Fu Z, Lu Y (2019) Self-limited ion-exchange grown Bi6Fe2Ti3O18-BiOBr ferroelectric heterostructure and the enhanced photocatalytic oxygen evolution. Appl Surf Sci 479:137–147

    Article  CAS  Google Scholar 

  37. Geerts L, Cosentino S, Liao T-W, Yadav A, Lin P-C, Zharinov VS, Hu K-J, Longo A, Pereira LM, Grandjean D (2019) Highly active oxygen evolution reaction model electrode based on supported gas-phase NiFe clusters. Catal Today

    Google Scholar 

  38. Shanmugam S, Sivanantham A, Matsunaga M, Simon U, Osaka T (2019) Metal phosphide nanoparticles embedded in carbon as efficient electrocatalyst for oxygen evolution reaction. Electrochim Acta 297:749–754

    Article  CAS  Google Scholar 

  39. Guo C, Sun X, Kuang X, Gao L, Zhao M, Qu L, Zhang Y, Wu D, Ren X, Wei Q (2019) Amorphous Co-doped MoOx nanospheres with a core–shell structure toward an effective oxygen evolution reaction. J Mater Chem A 7(3):1005–1012

    Google Scholar 

  40. Xu P, Qiu L, Wei L, Liu Y, Yuan D, Wang Y, Tsiakaras P (2019) Efficient overall water splitting over Mn doped Ni2P microflowers grown on nickel foam. Catal Today

    Google Scholar 

  41. Lu M, Li Y, He P, Cong J, Chen D, Wang J, Wu Y, Xu H, Gao J, Yao J (2019) Bimetallic metal-organic framework nanosheets as efficient electrocatalysts for oxygen evolution reaction. J Solid State Chem 272:32–37

    Article  CAS  Google Scholar 

  42. Zhang K, Xia X, Deng S, Xie D, Lu Y, Wang Y, Wu J, Wang X, Tu J (2019) N-doped CoO nanowire arrays as efficient electrocatalysts for oxygen evolution reaction. J Energy Chem 37:13–17

    Article  Google Scholar 

  43. Liu Z, Yuan C, Teng F, Tang M, Abideen ZU, Teng Y (2019) First insight on Mo (II) as electrocatalytically active species for oxygen evolution reaction. Int J Hydrogen Energy 44:1345–1351

    Article  CAS  Google Scholar 

  44. Sun H, Xu X, Hu Z, Tjeng LH, Zhao J, Zhang Q, Lin H-J, Chen C-T, Chan T-S, Zhou W, Shao Z (2019) Boosting the oxygen evolution reaction activity of a perovskite through introducing multi-element synergy and building an ordered structure. J Mater Chem A 7:9924–9932

    Article  CAS  Google Scholar 

  45. Chen H, Zhao Q, Gao L, Ran J, Hou Y (2019) Water-plasma assisted synthesis of oxygen-enriched Ni-Fe layered double hydroxide nanosheets for efficient oxygen evolution reaction. ACS Sustain Chem Eng

    Google Scholar 

  46. Jiang Z-Q, Li Y-F, Zhu X-J, Lu J, Wen T, Zhang L (2019) Ni (ii)-doped anionic metal–organic framework nanowire arrays for enhancing the oxygen evolution reaction. Chem Commun

    Google Scholar 

  47. Lu J, Wang S, Ding C, Lv W, Zeng Y, Liu N, Wang H, Meng Q, Liu Q (2019) Metal organic frameworks derived CoSe2@ N-Doped-carbon-nanorods as highly efficient electrocatalysts for oxygen evolution reaction. J Alloy Compd 778:134–140

    Google Scholar 

  48. Wang H, Wang J, Pi Y, Shao Q, Tan Y, Huang X (2019) Double Perovskite LaFexNi1−xO3 nanorods enable efficient oxygen evolution electrocatalysis. Angew Chem Int Ed 58:2316–2320

    Article  CAS  Google Scholar 

  49. Ke Z, Li L, Jia Q, Yang Y, Cui H (2019) Facile synthesis of jagged Au/Ir nanochains with superior electrocatalytic activity for oxygen evolution reaction. Appl Surf Sci 463:58–65

    Article  CAS  Google Scholar 

  50. Fu H, Liu Y, Chen L, Shi Y, Kong W, Hou J, Yu F, Wei T, Wang H, Guo X (2019) Designed formation of NiCo2O4 with different morphologies self-assembled from nanoparticles for asymmetric supercapacitors and electrocatalysts for oxygen evolution reaction. Electrochim Acta 296:719–729

    Article  CAS  Google Scholar 

  51. Guo M, Li Y, Zhou L, Zheng Q, Jie W, Xie F, Xu C, Lin D (2019) Hierarchically structured bimetallic electrocatalyst synthesized via template-directed fabrication MOF arrays for high-efficiency oxygen evolution reaction. Electrochim Acta 298:525–532

    Article  CAS  Google Scholar 

  52. Wang S, He P, Jia L, He M, Zhang T, Dong F, Liu M, Liu H, Zhang Y, Li C (2019) Nanocoral-like composite of nickel selenide nanoparticles anchored on two-dimensional multi-layered graphitic carbon nitride: a highly efficient electrocatalyst for oxygen evolution reaction. Appl Catal B 243:463–469

    Article  CAS  Google Scholar 

  53. Jadhav HS, Roy A, Thorat GM, Chung W-J, Seo JG (2019) Hierarchical free-standing networks of MnCo2S4 as efficient Electrocatalyst for oxygen evolution reaction. J Ind Eng Chem 71:452–459

    Article  CAS  Google Scholar 

  54. Lu W-X, Wang B, Chen W-J, Xie J-L, Huang Z-Q, Jin W, Song J-L (2019) Nanosheet-like Co3(OH)2(HPO4)2 as a highly efficient and stable electrocatalyst for oxygen evolution reaction. ACS Sustain Chem Eng 7:3083–3091

    Article  CAS  Google Scholar 

  55. Hong Y-R, Mhin S, Kim K-M, Han W-S, Choi H, Ali G, Chung KY, Lee HJ, Moon S-I, Dutta S (2019) Electrochemically activated cobalt nickel sulfide for an efficient oxygen evolution reaction: partial amorphization and phase control. J Mater Chem A 7:3592–3602

    Article  CAS  Google Scholar 

  56. Hu C, Zhang L, Huang Z, Zhu W, Zhao Z-J, Gong J (2019) Facet-evolution growth of Mn3O4@ CoxMn3-xO4 electrocatalysts on Ni foam towards efficient oxygen evolution reaction. J Catal 369:105–110

    Article  CAS  Google Scholar 

  57. Deng S, Shen Y, Xie D, Lu Y, Yu X, Yang L, Wang X, Xia X, Tu J (2019) Directional construction of Cu2S branch arrays for advanced oxygen evolution reaction. J Energy Chem 39:61–67

    Article  Google Scholar 

  58. Zhang Y, Zhang C, Guo Y, Liu D, Yu Y, Zhang B (2019) Selenium vacancy-rich CoSe2 ultrathin nanomeshes with abundant active sites for electrocatalytic oxygen evolution. J Mater Chem A 7:2536–2540

    Article  CAS  Google Scholar 

  59. Yu C, Lu J, Luo L, Xu F, Shen PK, Tsiakaras P, Yin S (2019) Bifunctional catalysts for overall water splitting: CoNi oxyhydroxide nanosheets electrodeposited on titanium sheets. Electrochim Acta 301:449–457

    Article  CAS  Google Scholar 

  60. Chen S, Dai J, Ren F, Xu H, Du Y (2019) 3D hollow nanoflowers assembled by ultrathin molybdenum-nickel phosphide nanosheets as robust electrocatalysts for oxygen evolution reaction. J Colloid Interface Sci 536:71–79

    Article  CAS  Google Scholar 

  61. Liu S, Liu B, Gong C, Li Z (2019) Finely prepared and optimized Co/Fe double hydroxide nanofilms at an ionic layer level on rough Cu substrates for efficient oxygen evolution reaction. Appl Surf Sci 478:615–622

    Article  CAS  Google Scholar 

  62. Zhang R, Sun Z, Zong C, Lin Z, Huang H, Yang K, Chen J, Liu S, Huang M, Yang Y (2019) Increase of Co 3d projected electronic density of states in AgCoO2 enabled an efficient electrocatalyst toward oxygen evolution reaction. Nano Energy 57:753–760

    Google Scholar 

  63. Zhang W, Song H, Cheng Y, Liu C, Wang C, Khan MAN, Zhang H, Liu J, Yu C, Wang L (2019) Core–shell prussian blue analogs with compositional heterogeneity and open cages for oxygen evolution reaction. Adv Sci 6(7):1801901

    Article  CAS  Google Scholar 

  64. Gao W-K, Chi J-Q, Wang Z-B, Lin J-H, Liu D-P, Zeng J-B, Yu J-F, Wang L, Chai Y-M, Dong B (2019) Optimized bimetallic nickel-iron phosphides with rich defects as enhanced electrocatalysts for oxygen evolution reaction. J Colloid Interface Sci 537:11–19

    Article  CAS  Google Scholar 

  65. Liu P-P, Zheng Y-Q, Zhu H-L, Li T-T (2019) Mn2O3 hollow nanotube arrays on Ni foam as efficient supercapacitors and electrocatalysts for oxygen evolution reaction. ACS Appl Nano Mater 2:744–749

    Article  CAS  Google Scholar 

  66. An L, Feng J, Zhang Y, Zhao Y-Q, Si R, Wang G-C, Cheng F, Xi P, Sun S (2019) Controllable tuning of Fe-N nanosheets by Co substitution for enhanced oxygen evolution reaction. Nano Energy 57:644–652

    Article  CAS  Google Scholar 

  67. Liu J, Wei S, Li N, Zhang L, Cui X (2019) Delicate excavated trimetallic Prussian blue analogues for efficient oxygen evolution reactions. Electrochim Acta 299:575–581

    Article  CAS  Google Scholar 

  68. He D, Wu X, Liu W, Lei C, Yu C, Zheng G, Pan J, Lei L, Zhang X (2019) Co1−xS embedded in porous carbon derived from metal organic framework as a highly efficient electrocatalyst for oxygen evolution reaction. Chin Chem Lett 30:229–233

    Article  CAS  Google Scholar 

  69. Chen W, Zhang Y, Chen G, Huang R, Zhou Y, Wu Y, Hu Y, Ostrikov KK (2019) Mesoporous cobalt–iron–organic frameworks: a plasma-enhanced oxygen evolution electrocatalyst. J Mater Chem A 7:3090–3100

    Article  CAS  Google Scholar 

  70. Zhang D, Kong X, Jiang M, Lei D, Lei X (2019) NiOOH-decorated α-FeOOH nanosheet array on stainless steel for applications in oxygen evolution reaction and supercapacitor. ACS Sustain Chem Eng

    Google Scholar 

  71. Zhong W, Lin Z, Feng S, Wang D, Shen S, Zhang Q, Gu L, Wang Z, Fang B (2019) Improved oxygen evolution activity of IrO2 by in situ engineering of an ultra-small Ir sphere shell utilizing a pulsed laser. Nanoscale 11:4407–4413

    Article  CAS  Google Scholar 

  72. Wu Y, Gao Y, He H, Zhang P (2019) Electrodeposition of self-supported Ni–Fe–Sn film on Ni foam: An efficient electrocatalyst for oxygen evolution reaction. Electrochim Acta 301:39–46

    Article  CAS  Google Scholar 

  73. Qiu B, Cai L, Wang Y, Ma S, Tsang YH, Chai Y (2019) Accelerated oxygen evolution kinetics on nickel–iron diselenide nanotubes by modulating electronic structure. Mater Today Energy 11:89–96

    Article  Google Scholar 

  74. Tolstoy V, Kuklo L, Gulina L (2019) Ni (II) doped FeOOH 2D nanocrystals, synthesized by Successive Ionic Layer Deposition, and their electrocatalytic properties during oxygen evolution reaction upon water splitting in the alkaline medium. J Alloy Compd 786:198–204

    Article  CAS  Google Scholar 

  75. Tian L, Wo H, Wang K, Wang X, Zhuang W, Li T, Du X (2019) Ultrathin wrinkled NiFeP nanosheets enable efficient oxygen evolution electrocatalysis. J Taiwan Inst Chem Eng 97:200–206

    Article  CAS  Google Scholar 

  76. Xu A, Dong C, Wu A, Li R, Wang L, Macdonald DD, Li X (2019) Plasma-modified C-doped Co3O4 nanosheets for the oxygen evolution reaction designed by Butler-Volmer and first-principle calculations. J Mater Chem A 7:4581–4595

    Article  CAS  Google Scholar 

  77. Qin M, Li S, Zhao Y, Lao CY, Zhang Z, Liu L, Fang F, Wu H, Jia B, Liu Z (2019) Unprecedented synthesis of Holey 2D layered double hydroxide nanomesh for enhanced oxygen evolution. Adv Energy Mater 9:1803060

    Article  CAS  Google Scholar 

  78. Zhao Y, Luo M, Chu S, Peng M, Liu B, Wu Q, Liu P, de Groot FM, Tan Y (2019) 3D nanoporous iridium-based alloy microwires for efficient oxygen evolution in acidic media. Nano Energy 59:146–153

    Article  CAS  Google Scholar 

  79. Zhan C, Liu Z, Zhou Y, Guo M, Zhang X, Tu J, Ding L, Cao Y (2019) Triple hierarchy and double synergies of NiFe/Co9S8/carbon cloth: a new and efficient electrocatalyst for the oxygen evolution reaction. Nanoscale 11:3378–3385

    Article  CAS  Google Scholar 

  80. Kou T, Wang S, Hauser JL, Chen M, Oliver SRJ, Ye Y, Guo J, Li Y (2019) Ni foam-supported Fe-Doped β-Ni(OH)2 nanosheets show ultralow overpotential for oxygen evolution reaction. ACS Energy Lett 4:622–628

    Article  CAS  Google Scholar 

  81. Hu X, Zhang S, Sun J, Yu L, Qian X, Hu R, Wang Y, Zhao H, Zhu J (2019) 2D Fe-containing cobalt phosphide/cobalt oxide lateral heterostructure with enhanced activity for oxygen evolution reaction. Nano Energy 56:109–117

    Article  CAS  Google Scholar 

  82. Ghadge SD, Velikokhatnyi OI, Datta MK, Shanthi PM, Tan S, Damodaran K, Kumta PN (2019) Experimental and theoretical validation of high efficiency and robust electrocatalytic response of one-dimensional (1D) (Mn, Ir)O2:10F nanorods for the oxygen evolution reaction in PEM-based water electrolysis. ACS Catalysis 9:2134–2157

    Article  CAS  Google Scholar 

  83. Jin J, Xia J, Qian X, Wu T, Ling H, Hu A, Li M, Hang T (2019) Exceptional electrocatalytic oxygen evolution efficiency and stability from electrodeposited NiFe alloy on Ni foam. Electrochim Acta 299:567–574

    Article  CAS  Google Scholar 

  84. Zu MY, Wang C, Zhang L, Zheng LR, Yang HG (2019) Reconstructing bimetallic carbide Mo6Ni6C for carbon interconnected MoNi alloys to boost oxygen evolution electrocatalysis. Mater Horiz 6:115–121

    Article  CAS  Google Scholar 

  85. Lin Y, Tian Z, Zhang L, Ma J, Jiang Z, Deibert BJ, Ge R, Chen L (2019) Chromium-ruthenium oxide solid solution electrocatalyst for highly efficient oxygen evolution reaction in acidic media. Nat Commun 10:162

    Article  CAS  Google Scholar 

  86. Yang S, Xie M, Chen L, Wei W, Lv X, Xu Y, Ullah N, Judith OC, Adegbemiga YB, Xie J (2019) Cobalt phosphide nanoparticles embedded in 3D N-doped porous carbon for efficient hydrogen and oxygen evolution reactions. Int J Hydrogen Energy 44:4543–4552

    Article  CAS  Google Scholar 

  87. Kim B-J, Fabbri E, Abbott DF, Cheng X, Clark AH, Nachtegaal M, Borlaf M, Castelli IE, Graule T, Schmidt TJ (2019) Functional role of Fe-doping in Co-based perovskite oxide catalysts for oxygen evolution reaction. J Am Chem Soc 141:5231–5240

    Article  CAS  Google Scholar 

  88. Novak TG, Prakash O, Tiwari AP, Jeon S (2019) Solution-phase phosphorus substitution for enhanced oxygen evolution reaction in Cu2WS4. RSC Adv 9:234–239

    Article  CAS  Google Scholar 

  89. Hwang J, Feng Z, Charles N, Wang XR, Lee D, Stoerzinger KA, Muy S, Rao RR, Lee D, Jacobs R, Morgan D, Shao-Horn Y (2019) Tuning perovskite oxides by strain: Electronic structure, properties, and functions in (electro)catalysis and ferroelectricity. Mater Today

    Google Scholar 

  90. Grimaud A, May KJ, Carlton CE, Lee Y-L, Risch M, Hong WT, Zhou J, Shao-Horn Y (2013) Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution. Nat Commun 4:2439

    Article  CAS  Google Scholar 

  91. Zhao B, Zhang L, Zhen D, Yoo S, Ding Y, Chen D, Chen Y, Zhang Q, Doyle B, Xiong X (2017) A tailored double perovskite nanofiber catalyst enables ultrafast oxygen evolution. Nat Commun 8:14586

    Article  CAS  Google Scholar 

  92. Han B, Shao-Horn Y (2018) In-situ study of the activated lattice oxygen redox reactions in metal oxides during oxygen evolution catalysis. In: Meeting abstracts. The Electrochemical Society, pp 1935–1935

    Google Scholar 

  93. Cai S, Meng Z, Tang H, Wang Y, Tsiakaras P (2017) 3D Co-N-doped hollow carbon spheres as excellent bifunctional electrocatalysts for oxygen reduction reaction and oxygen evolution reaction. Appl Catal B 217:477–484

    Article  CAS  Google Scholar 

  94. Xu L, Zou Y, Xiao Z, Wang S (2019) Transforming Co3O4 nanosheets into porous N-doped CoxOy nanosheets with oxygen vacancies for the oxygen evolution reaction. J Energy Chem 35:24–29

    Google Scholar 

Download references

Acknowledgements

Dr. Angeliki Brouzgou thankfully acknowledges the post-doc program: “Strengthening Postdoctoral Researchers”, co-funded by the Greek State Scholarships Foundation, the “Human Resource Development, Education and Lifelong Learning with Priority Axes 6,8,9, by the European Commission Social Fund-ECB and the Greek government”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Brouzgou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brouzgou, A. (2020). Oxygen Evolution Reaction. In: Inamuddin, Boddula, R., Asiri, A. (eds) Methods for Electrocatalysis. Springer, Cham. https://doi.org/10.1007/978-3-030-27161-9_6

Download citation

Publish with us

Policies and ethics