Skip to main content

Logarithmic Divergences: Geometry and Interpretation of Curvature

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11712))

Included in the following conference series:

Abstract

We study the logarithmic \(L^{(\alpha )}\)-divergence which extrapolates the Bregman divergence and corresponds to solutions to novel optimal transport problems. We show that this logarithmic divergence is equivalent to a conformal transformation of the Bregman divergence, and, via an explicit affine immersion, is equivalent to Kurose’s geometric divergence. In particular, the \(L^{(\alpha )}\)-divergence is a canonical divergence of a statistical manifold with constant sectional curvature \(-\alpha \). For such a manifold, we give a geometric interpretation of its sectional curvature in terms of how the divergence between a pair of primal and dual geodesics differ from the dually flat case. Further results can be found in our follow-up paper [27] which uncovers a novel relation between optimal transport and information geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amari, S.: Information Geometry and Its Applications. Springer, Tokyo (2016). https://doi.org/10.1007/978-4-431-55978-8

    Book  MATH  Google Scholar 

  2. Amari, S., Cichocki, A.: Information geometry of divergence functions. Bull. Pol. Acad. Sci. Tech. Sci. 58(1), 183–195 (2010)

    Google Scholar 

  3. Amari, S., Nagaoka, H.: Methods of Information Geometry, vol. 191. American Mathematical Society, Providence (2000)

    MATH  Google Scholar 

  4. Ay, N., Amari, S.: A novel approach to canonical divergences within information geometry. Entropy 17(12), 8111–8129 (2015)

    Article  Google Scholar 

  5. Felice, D., Ay, N.: Dynamical systems induced by canonical divergence in dually flat manifolds. arXiv preprint arXiv:1812.04461 (2018)

  6. Felice, D., Ay, N.: Towards a canonical divergence within information geometry. arXiv preprint arXiv:1806.11363 (2018)

  7. Fernholz, E.R.: Stochastic portfolio theory. In: Fernholz, E.R. (ed.) Stochastic Portfolio Theory, pp. 1–24. Springer, New York (2002). https://doi.org/10.1007/978-1-4757-3699-1_1

    Chapter  MATH  Google Scholar 

  8. Henmi, M., Kobayashi, R.: Hooke’s law in statistical manifolds and divergences. Nagoya Math. J. 159, 1–24 (2000)

    Article  MathSciNet  Google Scholar 

  9. Khan, G., Zhang, J.: On the Kähler geometry of certain optimal transport problems. arXiv preprint arXiv:1812.00032v2 (2019)

  10. Kim, Y.-H., McCann, R.J.: Continuity, curvature, and the general covariance of optimal transportation. J. Eur. Math. Soc. 12(4), 1009–1040 (2010)

    Article  MathSciNet  Google Scholar 

  11. Kurose, T.: On the divergences of 1-conformally flat statistical manifolds. Tohoku Math. J. Second. Ser. 46(3), 427–433 (1994)

    Article  MathSciNet  Google Scholar 

  12. Matsuzoe, H.: Geometry of contrast functions and conformal geometry. Hiroshima Math. J. 29(1), 175–191 (1999)

    Article  MathSciNet  Google Scholar 

  13. Matsuzoe, H.: Statistical manifolds and affine differential geometry. In: Probabilistic Approach to Geometry, pp. 303–321. Mathematical Society of Japan (2010)

    Google Scholar 

  14. Nielsen, F., Nock, R.: Total Jensen divergences: definition, properties and clustering. In: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2016–2020. IEEE (2015)

    Google Scholar 

  15. Nock, R., Nielsen, F., Amari, S.: On conformal divergences and their population minimizers. IEEE Trans. Inf. Theory 62(1), 527–538 (2016)

    Article  MathSciNet  Google Scholar 

  16. Nomizu, K., Sasaki, T.: Affine Differential Geometry: Geometry of Affine Immersions. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  17. Okamoto, I., Amari, S.-I., Takeuchi, K.: Asymptotic theory of sequential estimation: differential geometrical approach. Ann. Stat. 19(2), 961–981 (1991)

    Article  MathSciNet  Google Scholar 

  18. Pal, S.: On the difference between entropic cost and the optimal transport cost. arXiv preprint arXiv:1905.12206 (2019)

  19. Pal, S., Wong, T.-K.L.: The geometry of relative arbitrage. Math. Financ. Econ. 10(3), 263–293 (2016)

    Article  MathSciNet  Google Scholar 

  20. Pal, S., Wong, T.-K.L.: Exponentially concave functions and a new information geometry. Ann. Probab. 46(2), 1070–1113 (2018)

    Article  MathSciNet  Google Scholar 

  21. Pal, S., Wong, T.-K.L.: Multiplicative Schröodinger problem and the Dirichlet transport. arXiv preprint arXiv:1807.05649 (2018)

  22. Sternberg, S.: Curvature in Mathematics and Physics. Dover, Mineola (2012)

    MATH  Google Scholar 

  23. Vemuri, B.C., Liu, M., Amari, S., Nielsen, F.: Total Bregman divergence and its applications to DTI analysis. IEEE Trans. Med. Imaging 30(2), 475–483 (2010)

    Article  Google Scholar 

  24. Wong, T.-K.L.: Optimization of relative arbitrage. Ann. Financ. 11(3–4), 345–382 (2015)

    Article  MathSciNet  Google Scholar 

  25. Wong, T.-K.L.: Logarithmic divergences from optimal transport and Rényi geometry. Inf. Geom. 1(1), 39–78 (2018)

    Article  Google Scholar 

  26. Wong, T.-K.L.: Information geometry in portfolio theory. In: Nielsen, F. (ed.) Geometric Structures of Information. SCT, pp. 105–136. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-02520-5_6

    Chapter  Google Scholar 

  27. Wong, T.-K.L., Yang, J.: Optimal transport and information geometry. arXiv preprint arXiv:1906.00030 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting-Kam Leonard Wong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wong, TK.L., Yang, J. (2019). Logarithmic Divergences: Geometry and Interpretation of Curvature. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2019. Lecture Notes in Computer Science(), vol 11712. Springer, Cham. https://doi.org/10.1007/978-3-030-26980-7_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26980-7_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26979-1

  • Online ISBN: 978-3-030-26980-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics