Skip to main content

Combining High Speed ELM with a CNN Feature Encoding to Predict LncRNA-Disease Associations

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11644))

Included in the following conference series:

Abstract

Accumulated evidence indicates that lncRNAs are critical for many biological processes, especially diseases. Therefore, identifying potential lncRNA-disease associations is significant for disease prevention, diagnosis, treatment and understanding of cell life activities at the molecular level. Although novel technologies have generated considerable associations for various lncRNAs and diseases, it has inevitable drawbacks such as high cost, time consumption, and error rate. For this reason, integrating various biological databases to predict the potential association of lncRNA and disease is of great attraction. In this paper, we proposed the model called ECLDA to predict lncRNA-disease associations by combining CNN and highspeed ELM. Firstly, the feature vectors are constructed by integrating lncRNA functional similarity, disease semantic similarity and Gaussian interaction profile kernel similarity. Secondly, CNN is carried out to mine local and higher-level abstract features of the vectors. Finally, high speed ELM is used to identify the novel lncRNA disease associations. The ECLDA computational model achieved AUCs of 0.9014 in 5-fold cross validation. The results showed that ECLDA is expected to be a practical tool for biomedical research in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Djebali, S., et al.: Landscape of transcription in human cells. Nature 489(7414), 101 (2012)

    Article  Google Scholar 

  2. Bertone, P., et al.: Global identification of human transcribed sequences with genome tiling arrays. Science 306(5705), 2242–2246 (2004)

    Article  Google Scholar 

  3. ENCODE Project Consortium: Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447(7146), 799 (2007)

    Google Scholar 

  4. Schmitt, A.M., Chang, H.Y.: Long noncoding RNAs in cancer pathways. Cancer Cell 29(4), 452–463 (2016)

    Article  Google Scholar 

  5. Alvarez-Dominguez, J.R., Lodish, H.F.: Emerging mechanisms of long noncoding RNA function during normal and malignant hematopoiesis. Blood 130(18), 1965–1975 (2017)

    Article  Google Scholar 

  6. Johnson, R.: Long non-coding RNAs in Huntington’s disease neurodegeneration. Neurobiol. Dis. 46(2), 245–254 (2012)

    Article  Google Scholar 

  7. Hrdlickova, B., de Almeida, R.C., Borek, Z., Withoff, S.: Genetic variation in the non-coding genome: Involvement of micro-RNAs and long non-coding RNAs in disease. Biochim. et Biophys. Acta (BBA)-Mol. Basis Dis. 1842(10), 1910–1922 (2014)

    Article  Google Scholar 

  8. Qiu, M.-T., Hu, J.-W., Yin, R., Xu, L.: Long noncoding RNA: an emerging paradigm of cancer research. Tumor Biol. 34(2), 613–620 (2013)

    Article  Google Scholar 

  9. Zhu, L., You, Z.-H., Huang, D.-S., Wang, B.: t-LSE: a novel robust geometric approach for modeling protein-protein interaction networks. PLoS ONE 8(4), e58368 (2013)

    Article  Google Scholar 

  10. Zhu, L., You, Z.-H., Huang, D.-S.: Identifying spurious interactions in the protein-protein interaction networks using local similarity preserving embedding. In: Basu, M., Pan, Y., Wang, J. (eds.) ISBRA 2014. LNCS, vol. 8492, pp. 138–148. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08171-7_13

    Chapter  Google Scholar 

  11. Zhu, L., You, Z.-H., Huang, D.-S.: Increasing the reliability of protein–protein interaction networks via non-convex semantic embedding. Neurocomputing 121, 99–107 (2013)

    Article  Google Scholar 

  12. Zhu, L., Deng, S.-P., You, Z.-H., Huang, D.-S.: Identifying spurious interactions in the protein-protein interaction networks using local similarity preserving embedding. IEEE/ACM Trans. Comput. Biol. Bioinform. (TCBB) 14(2), 345–352 (2017)

    Article  Google Scholar 

  13. You, Z.-H., Zhou, M., Luo, X., Li, S.: Highly efficient framework for predicting interactions between proteins. IEEE Trans. Cybern. 47(3), 731–743 (2017)

    Article  Google Scholar 

  14. You, Z.-H., Yu, J.-Z., Zhu, L., Li, S., Wen, Z.-K.: A MapReduce based parallel SVM for large-scale predicting protein-protein interactions. Neurocomputing 145, 37–43 (2014)

    Article  Google Scholar 

  15. You, Z.-H., Ming, Z., Huang, H., Peng, X.: A novel method to predict protein-protein interactions based on the information of protein sequence. In: 2012 IEEE International Conference on Control System, Computing and Engineering (ICCSCE), pp. 210–215. IEEE (2012)

    Google Scholar 

  16. You, Z.-H., Li, S., Gao, X., Luo, X., Ji, Z.: Large-scale protein-protein interactions detection by integrating big biosensing data with computational model. BioMed. Res. Int. 2014 (2014)

    Article  Google Scholar 

  17. You, Z.-H., Li, L., Ji, Z., Li, M., Guo, S.: Prediction of protein-protein interactions from amino acid sequences using extreme learning machine combined with auto covariance descriptor. In: 2013 IEEE Workshop on Memetic Computing (MC), pp. 80–85. IEEE (2013)

    Google Scholar 

  18. You, Z.-H., et al.: Detecting protein-protein interactions with a novel matrix-based protein sequence representation and support vector machines. Biomed. Res. Int. 2015, 1 (2015)

    Article  Google Scholar 

  19. You, Z.-H., Lei, Y.-K., Zhu, L., Xia, J., Wang, B.: Prediction of protein-protein interactions from amino acid sequences with ensemble extreme learning machines and principal component analysis. BMC Bioinform. 14(Suppl 8), S10 (2013)

    Article  Google Scholar 

  20. You, Z.-H., Lei, Y.-K., Gui, J., Huang, D.-S., Zhou, X.: Using manifold embedding for assessing and predicting protein interactions from high-throughput experimental data. Bioinformatics 26(21), 2744–2751 (2010)

    Article  Google Scholar 

  21. You, Z.-H., Huang, W., Zhang, S., Huang, Y.-A., Yu, C.-Q., Li, L.-P.: An efficient ensemble learning approach for predicting protein-protein interactions by integrating protein primary sequence and evolutionary information. IEEE/ACM Trans. Comput. Biol. Bioinform. 16(3), 809–817 (2018)

    Article  Google Scholar 

  22. You, Z.-H., Chan, K.C., Hu, P.: Predicting protein-protein interactions from primary protein sequences using a novel multi-scale local feature representation scheme and the random forest. PLoS ONE 10(5), e0125811 (2015)

    Article  Google Scholar 

  23. You, Z.H., Zhu, L., Zheng, C.H., Yu, H.J., Deng, S.P., Ji, Z.: Prediction of protein-protein interactions from amino acid sequences using a novel multi-scale continuous and discontinuous feature set. BMC Bioinform. 15(S15), S9 (2014)

    Article  Google Scholar 

  24. Wong, L., You, Z.-H., Ming, Z., Li, J., Chen, X., Huang, Y.-A.: Detection of interactions between proteins through rotation forest and local phase quantization descriptors. Int. J. Mol. Sci. 17(1), 21 (2015)

    Article  Google Scholar 

  25. Wen, Y.-T., Lei, H.-J., You, Z.-H., Lei, B.-Y., Chen, X., Li, L.-P.: Prediction of protein-protein interactions by label propagation with protein evolutionary and chemical information derived from heterogeneous network. J. Theor. Biol. 430, 9–20 (2017)

    Article  Google Scholar 

  26. Wang, Y.-B., You, Z.-H., Li, L.-P., Huang, Y.-A., Yi, H.-C.: Detection of interactions between proteins by using legendre moments descriptor to extract discriminatory information embedded in pssm. Molecules 22(8), 1366 (2017)

    Article  Google Scholar 

  27. Wang, Y.-B., You, Z.-H., Li, L.-P., Huang, D.-S., Zhou, F.-F., Yang, S.: Improving prediction of self-interacting proteins using stacked sparse auto-encoder with PSSM profiles. Int. J. Biol. Sci. 14(8), 983–991 (2018)

    Article  Google Scholar 

  28. Wang, Y.B., et al.: Predicting protein-protein interactions from protein sequences by a stacked sparse autoencoder deep neural network. Mol. BioSyst. 13(7), 1336–1344 (2017)

    Article  Google Scholar 

  29. Wang, Y., et al.: Predicting protein interactions using a deep learning method-stacked sparse autoencoder combined with a probabilistic classification vector machine. Complexity 2018 (2018)

    Google Scholar 

  30. Wang, L., et al.: Advancing the prediction accuracy of protein-protein interactions by utilizing evolutionary information from position-specific scoring matrix and ensemble classifier. J. Theor. Biol. 418, 105–110 (2017)

    Article  MathSciNet  Google Scholar 

  31. Li, Z.-W., You, Z.-H., Chen, X., Gui, J., Nie, R.: Highly accurate prediction of protein-protein interactions via incorporating evolutionary information and physicochemical characteristics. Int. J. Mol. Sci. 17(9), 1396 (2016)

    Article  Google Scholar 

  32. Li, Z.W., et al.: Accurate prediction of protein-protein interactions by integrating potential evolutionary information embedded in PSSM profile and discriminative vector machine classifier. Oncotarget 8(14), 23638 (2017)

    Google Scholar 

  33. Lei, Y.-K., You, Z.-H., Ji, Z., Zhu, L., Huang, D.-S.: Assessing and predicting protein interactions by combining manifold embedding with multiple information integration. BMC Bioinform. 13(Suppl 7), S3 (2012)

    Article  Google Scholar 

  34. Lei, Y.-K., You, Z.-H., Dong, T., Jiang, Y.-X., Yang, J.-A.: Increasing reliability of protein interactome by fast manifold embedding. Pattern Recogn. Lett. 34(4), 372–379 (2013)

    Article  Google Scholar 

  35. Huang, Y.-A., et al.: Construction of reliable protein–protein interaction networks using weighted sparse representation based classifier with pseudo substitution matrix representation features. Neurocomputing 218, 131–138 (2016)

    Article  Google Scholar 

  36. Huang, Y.-A., You, Z.-H., Chen, X., Yan, G.-Y.: Improved protein-protein interactions prediction via weighted sparse representation model combining continuous wavelet descriptor and PseAA composition. BMC Syst. Biol. 10(4), 120 (2016)

    Article  Google Scholar 

  37. Huang, Q., You, Z., Zhang, X., Zhou, Y.: Prediction of protein-protein interactions with clustered amino acids and weighted sparse representation. Int. J. Mol. Sci. 16(5), 10855–10869 (2015)

    Article  Google Scholar 

  38. Chen, Z.-H., You, Z.-H., Li, L.-P., Wang, Y.-B., Li, X.: RP-FIRF: prediction of self-interacting proteins using random projection classifier combining with finite impulse response filter. In: Huang, D.-S., Jo, K.-H., Zhang, X.-L. (eds.) ICIC 2018. LNCS, vol. 10955, pp. 232–240. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95933-7_29

    Chapter  Google Scholar 

  39. An, J.Y., Meng, F.R., You, Z.H., Chen, X., Yan, G.Y., Hu, J.P.: Improving protein–protein interactions prediction accuracy using protein evolutionary information and relevance vector machine model. Protein Sci. 25(10), 1825–1833 (2016)

    Article  Google Scholar 

  40. You, Z.-H., et al.: PRMDA: personalized recommendation-based MiRNA-disease association prediction. Oncotarget 8(49), 85568 (2017)

    Article  Google Scholar 

  41. Wang, L., et al.: MTRDA: using logistic model tree to predict miRNA-disease associations by fusing multi-source information of sequences and similarities. PLoS Comput. Biol. 15(3), e1006865 (2019)

    Article  Google Scholar 

  42. Huang, Y.-A., You, Z.-H., Chen, X., Huang, Z.-A., Zhang, S., Yan, G.-Y.: Prediction of microbe–disease association from the integration of neighbor and graph with collaborative recommendation model. J. Transl. Med. 15(1), 209 (2017)

    Article  Google Scholar 

  43. Chen, X., Zhang, D.-H., You, Z.-H.: A heterogeneous label propagation approach to explore the potential associations between miRNA and disease. J. Transl. Med. 16(1), 348 (2018)

    Article  Google Scholar 

  44. Chen, X., Xie, D., Zhao, Q., You, Z.-H.: MicroRNAs and complex diseases: from experimental results to computational models. Briefings Bioinform. 20(2), 515–539 (2017)

    Article  Google Scholar 

  45. Chen, X., Wang, C.-C., Yin, J., You, Z.-H.: Novel human miRNA-disease association inference based on random forest. Mol. Ther.-Nucleic Acids 13, 568–579 (2018)

    Article  Google Scholar 

  46. Chen, X., Huang, Y.-A., Wang, X.-S., You, Z.-H., Chan, K.C.: FMLNCSIM: fuzzy measure-based lncRNA functional similarity calculation model. Oncotarget 7(29), 45948 (2016)

    Google Scholar 

  47. Chen, X., You, Z.H., Yan, G.Y., Gong, D.W.: IRWRLDA: improved random walk with restart for lncRNA-disease association prediction. Oncotarget 7(36), 57919–57931 (2016)

    Google Scholar 

  48. Huang, Y., Chen, X., You, Z., Huang, D., Chan, K.: ILNCSIM: improved lncRNA functional similarity calculation model. Oncotarget 7(18), 25902 (2016)

    Google Scholar 

  49. Zhan, Z.-H., You, Z.-H., Zhou, Y., Li, L.-P., Li, Z.-W.: Efficient framework for predicting ncRNA-protein interactions based on sequence information by deep learning. In: Huang, D.-S., Jo, K.-H., Zhang, X.-L. (eds.) ICIC 2018. LNCS, vol. 10955, pp. 337–344. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95933-7_41

    Chapter  Google Scholar 

  50. Yi, H.-C., You, Z.-H., Huang, D.-S., Li, X., Jiang, T.-H., Li, L.-P.: A deep learning framework for robust and accurate prediction of ncRNA-protein interactions using evolutionary information. Mol. Ther.-Nucleic Acids 11, 337–344 (2018)

    Article  Google Scholar 

  51. Chan, K.C., You, Z.-H.: Large-scale prediction of drug-target interactions from deep representations. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 1236–1243. IEEE (2016)

    Google Scholar 

  52. Chen, X., et al.: NRDTD: a database for clinically or experimentally supported non-coding RNAs and drug targets associations. Database 2017 (2017)

    Google Scholar 

  53. Huang, Y.-A., You, Z.-H., Chen, X.: A systematic prediction of drug-target interactions using molecular fingerprints and protein sequences. Curr. Protein Pept. Sci. 19(5), 468–478 (2018)

    Article  Google Scholar 

  54. Li, Z., et al.: In silico prediction of drug-target interaction networks based on drug chemical structure and protein sequences. Sci. Rep. 7(1), 11174 (2017)

    Article  Google Scholar 

  55. Meng, F.-R., You, Z.-H., Chen, X., Zhou, Y., An, J.-Y.: Prediction of drug–target interaction networks from the integration of protein sequences and drug chemical structures. Molecules 22(7), 1119 (2017)

    Article  Google Scholar 

  56. Sun, X., Bao, J., You, Z., Chen, X., Cui, J.: Modeling of signaling crosstalk-mediated drug resistance and its implications on drug combination. Oncotarget 7(39), 63995 (2016)

    Article  Google Scholar 

  57. Wang, L., et al.: Computational methods for the prediction of drug-target interactions from drug fingerprints and protein sequences by stacked auto-encoder deep neural network. In: Cai, Z., Daescu, O., Li, M. (eds.) ISBRA 2017. LNCS, vol. 10330, pp. 46–58. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59575-7_5

    Chapter  Google Scholar 

  58. Wang, L., et al.: A computational-based method for predicting drug–target interactions by using stacked autoencoder deep neural network. J. Comput. Biol. 25(3), 361–373 (2018)

    Article  MathSciNet  Google Scholar 

  59. Wang, L., You, Z.-H., Chen, X., Yan, X., Liu, G., Zhang, W.: Rfdt: a rotation forest-based predictor for predicting drug-target interactions using drug structure and protein sequence information. Curr. Protein Pept. Sci. 19(5), 445–454 (2018)

    Article  Google Scholar 

  60. Chen, G., et al.: LncRNADisease: a database for long-non-coding RNA-associated diseases. Nucleic Acids Res. 41(D1), D983–D986 (2012)

    Article  Google Scholar 

  61. Wang, D., Wang, J., Lu, M., Song, F., Cui, Q.: Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases. Bioinformatics 26(13), 1644–1650 (2010)

    Article  Google Scholar 

  62. Chen, X., Yan, C.C., Luo, C., Ji, W., Zhang, Y., Dai, Q.: Constructing lncRNA functional similarity network based on lncRNA-disease associations and disease semantic similarity. Sci. Rep. 5, 11338 (2015)

    Article  Google Scholar 

  63. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: theory and applications. Neurocomputing 70(1–3), 489–501 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhu-Hong You .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guo, ZH., You, ZH., Li, LP., Wang, YB., Chen, ZH. (2019). Combining High Speed ELM with a CNN Feature Encoding to Predict LncRNA-Disease Associations. In: Huang, DS., Jo, KH., Huang, ZK. (eds) Intelligent Computing Theories and Application. ICIC 2019. Lecture Notes in Computer Science(), vol 11644. Springer, Cham. https://doi.org/10.1007/978-3-030-26969-2_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26969-2_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26968-5

  • Online ISBN: 978-3-030-26969-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics