Skip to main content

CT in Cardiac Applications

  • Chapter
  • First Online:
Computed Tomography
  • 3124 Accesses

Abstract

Imaging the heart and its associated structures is among the most challenging applications for computed tomography. This chapter begins with basic anatomy and key physiological properties of the heart that are important for cardiac CT. The next section focuses on the characteristics of CT scanners that influence the quality of cardiac CT images and key imaging strategies for achieving high-quality results. Finally, a range of common clinical applications for cardiac CT are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Blanke P, Schoepf UJ, Leipsic JA. CT in transcatheter aortic valve replacement. Radiology. 2013;269(3):650–69.

    Article  PubMed  Google Scholar 

  2. O’Brien JP, Srichai MB, Hecht EM, Kim DC, Jacobs JE. Anatomy of the heart at multidetector CT: what the radiologist needs to know. Radiographics. 2007;27(6):1569–82.

    Article  PubMed  Google Scholar 

  3. Villa AD, Sammut E, Nair A, Rajani R, Bonamini R, Chiribiri A. Coronary artery anomalies overview: the normal and the abnormal. World J Radiol. 2016;8(6):537–55.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hood WB Jr. Regional venous drainage of the human heart. Br Heart J. BMJ Publishing Group. 1968;30(1):105.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kligerman S. Imaging of pericardial disease. Radiol Clin N Am. 2019;57(1):179–99.

    Article  PubMed  Google Scholar 

  6. Mahesh M, Cody DD. Physics of cardiac imaging with multiple-row detector CT. pubsrsnaorg. 2007.

    Google Scholar 

  7. Boudoulas H, Geleris P, Lewis RP, Chest SR. Linear relationship between electrical systole, mechanical systole, and heart rate. CHEST. 1981;80:613–7.

    Article  CAS  PubMed  Google Scholar 

  8. Chung CS, Karamanoglu M, Kovács SJ. Duration of diastole and its phases as a function of heart rate during supine bicycle exercise. Am J Phys Heart Circ Phys. 2004;287(5):H2003–8.

    CAS  Google Scholar 

  9. Garner KK, Pomeroy W, Arnold JJ. Exercise stress testing: indications and common questions. Am Fam Physician. 2017;96(5):293–9.

    PubMed  Google Scholar 

  10. Achenbach S. Cardiac CT: state of the art for the detection of coronary arterial stenosis. J Cardiovasc Comput Tomogr. 2007;1(1):3–20.

    Article  PubMed  Google Scholar 

  11. Rubin GD. Emerging and evolving roles for CT in screening for coronary heart disease. J Am Coll Radiol. 10(12):943–8.

    Article  PubMed  Google Scholar 

  12. Saini S, Rubin GD, Kalra MK. MDCT: a practical approach. New York: Springer Science & Business Media; 2007.

    Google Scholar 

  13. Rubin GD, Leipsic J, Joseph Schoepf U, Fleischmann D, Napel S. CT angiography after 20 years: a transformation in cardiovascular disease characterization continues to advance. Radiology. 2014;271(3):633–52.

    Article  PubMed  Google Scholar 

  14. Janowitz WR. Current status of mechanical computed tomography in cardiac imaging. Am J Cardiol. 2001;88(2A):35E–8E.

    Article  CAS  PubMed  Google Scholar 

  15. Funabashi N, Kobayashi Y, Perlroth M, Rubin GD. Coronary artery: quantitative evaluation of normal diameter determined with electron-beam CT compared with cine coronary angiography initial experience. Radiology. 2003;226(1):263–71.

    Article  PubMed  Google Scholar 

  16. Moshage WE, Achenbach S, Seese B, Bachmann K, Kirchgeorg M. Coronary artery stenoses: three-dimensional imaging with electrocardiographically triggered, contrast agent-enhanced, electron-beam CT. Radiology. 1995;196:707–14.

    Article  CAS  PubMed  Google Scholar 

  17. Stehli J, Fuchs TA, Bull S, Clerc OF, Possner M, Buechel RR, et al. Accuracy of coronary CT angiography using a submillisievert fraction of radiation exposure: comparison with invasive coronary angiography. J Am Coll Cardiol. 2014;64(8):772–80.

    Article  PubMed  Google Scholar 

  18. Bischoff B, Hein F, Meyer T, Hadamitzky M, Martinoff S, Schömig A, et al. Impact of a reduced tube voltage on CT angiography and radiation dose: results of the PROTECTION I study. JACC: Cardiovasc Imaging. 2009;2(8):940–6.

    Google Scholar 

  19. Rybicki FJ, Otero HJ, Steigner ML, Vorobiof G, Nallamshetty L, Mitsouras D, et al. Initial evaluation of coronary images from 320-detector row computed tomography. Int J Cardiovasc Imaging. 2008;24(5):535–46.

    Article  PubMed  Google Scholar 

  20. Flohr TG, McCollough CH, Bruder H, Petersilka M, Gruber K, Süβ C, et al. First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol. 2005;16(2):256–68.

    Article  PubMed  Google Scholar 

  21. Gassenmaier T, Petri N, Allmendinger T, Flohr T, Weng AM, Kunz AS, et al. In vitro comparison of second- and third-generation dual-source CT for coronary stent visualization at different tube potentials. Acad Radiol. 2016;23(8):961–8.

    Article  PubMed  Google Scholar 

  22. Goldman LW. Principles of CT: multislice CT. J Nucl Med Technol. Society of Nuclear Medicine. 2008;36(2):57–68.

    Article  PubMed  Google Scholar 

  23. Lin E, Alessio A. What are the basic concepts of temporal, contrast, and spatial resolution in cardiac CT? J Cardiovasc Comput Tomogr. 2009;3(6):403–8.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ghekiere O, Salgado R, Buls N, Leiner T, Mancini I, Vanhoenacker P, et al. Image quality in coronary CT angiography: challenges and technical solutions. Br J Radiol. 2nd ed. Br Inst Radiol. 2017;90(1072):20160567.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kitagawa K, George RT, Arbab-Zadeh A, Lima JAC, Lardo AC. Characterization and correction of beam-hardening artifacts during dynamic volume CT assessment of myocardial perfusion1. Radiology. Radiological Society of North America, Inc. 2010.

    Google Scholar 

  26. Kalisz K, Buethe J, Saboo SS, Abbara S, Halliburton S, Rajiah P. Artifacts at cardiac CT: physics and solutions. Radiographics. 2016;36(7):2064–83.

    Article  PubMed  Google Scholar 

  27. Pannu HK, Alvarez W Jr, Fishman EK. β-Blockers for cardiac CT: a primer for the radiologist. Am J Roentgenol. 2006;186(6_supplement_2):S341–5.

    Article  Google Scholar 

  28. Sabarudin A, Sun Z. Beta-blocker administration protocol for prospectively ECG triggered coronary CT angiography. WJC. 2013;5(12):453–7.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sato K, Isobe S, Sugiura K, Mimura T, Yotsudake Y, Meno C, et al. Optimal starting time of acquisition and feasibility of complementary administration of nitroglycerin with intravenous β-blocker in multislice computed tomography. J Comput Assist Tomogr. 2009;33(2):193–8.

    Article  PubMed  Google Scholar 

  30. Earls JP. How to use a prospective gated technique for cardiac CT. J Cardiovasc Comput Tomogr.. Elsevier. 2009;3(1):45–51.

    Article  PubMed  Google Scholar 

  31. Hausleiter J, Meyer T, Hermann F, Hadamitzky M, Krebs M, Gerber TC, et al. Estimated radiation dose associated with cardiac CT angiography. JAMA. American Medical Association. 2009;301(5):500–7.

    Article  CAS  PubMed  Google Scholar 

  32. Petersilka M, Bruder H, Krauss B, Stierstorfer K, Flohr TG. Technical principles of dual source CT. Eur J Radiol. 2008;68(3):362–8.

    Article  PubMed  Google Scholar 

  33. Fan L, Zhang J, Xu D, Dong Z, Li X, Zhang L. CTCA image quality improvement by using snapshot freeze technique under prospective and retrospective electrocardiographic gating. J Comput Assist Tomogr. 2015;39(2):202–6.

    Article  PubMed  Google Scholar 

  34. Liang J, Wang H, Xu L, Dong L, Fan Z, Wang R, et al. Impact of SSF on diagnostic performance of coronary computed tomography angiography within 1 heart beat in patients with high heart rate using a 256-row detector computed tomography. J Comput Assist Tomogr. 2018;42(1):54–61.

    Article  PubMed  Google Scholar 

  35. Einstein AJ, Henzlova MJ, Rajagopalan S. Estimating risk of cancer associated with radiation exposure from 64-slice computed tomography coronary angiography. JAMA.. American Medical Association. 2007;298(3):317–23.

    Article  CAS  PubMed  Google Scholar 

  36. Brenner DJ, Hall EJ. Computed tomography – an increasing source of radiation exposure. N Engl J Med. 2007;357(22):2277–84.

    Article  CAS  PubMed  Google Scholar 

  37. Hirshfeld JW, Ferrari VA, Bengel FM, Bergersen L, Chambers CE, Einstein AJ, et al. 2018 ACC/HRS/NASCI/SCAI/SCCT expert consensus document on optimal use of ionizing radiation in cardiovascular imaging-best practices for safety and effectiveness, part 1: radiation physics and radiation biology: a report of the American College of Cardiology Task Force on expert consensus decision pathways developed in collaboration with mended hearts. Catheter Cardiovasc Interv. 2018;92(2):203–21.

    Article  PubMed  Google Scholar 

  38. Stocker TJ, Deseive S, Leipsic J, Chen MY, Rubinshtein R, Heckner M, et al. Reduction in radiation exposure in cardiovascular computed tomography imaging: results from the PROspective multicenter registry on radiaTion dose estimates of cardiac CT angIOgraphy iN daily practice in 2017 (PROTECTION VI). Eur Heart J. 2018;39(41):3715–23.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Huda W, Magill D, He W. CT effective dose per dose length product using ICRP 103 weighting factors. Med Phys. John Wiley & Sons, Ltd. 2011;38(3):1261–5.

    Article  PubMed  Google Scholar 

  40. Lira D, Padole A, Kalra MK, Singh S. Tube potential and CT radiation dose optimization. Am J Roentgenol. 2015;204(1):W4–W10.

    Article  Google Scholar 

  41. Hausleiter J, Meyer TS, Martuscelli E, Spagnolo P, Yamamoto H, Carrascosa P, et al. Image quality and radiation exposure with prospectively ECG-triggered axial scanning for coronary CT angiography: the multicenter, multivendor, randomized PROTECTION-III study. JACC Cardiovasc Imaging. 2012;5(5):484–93.

    Article  PubMed  Google Scholar 

  42. Matsubara K, Kawashima H, Chusin T, Okubo R. How to optimize radiation dose in computed tomography examinations: available methods and techniques. Med Phys Int. 2017;5(2):498.

    Google Scholar 

  43. Deseive S, Pugliese F, Meave A, Alexanderson E, Martinoff S, Hadamitzky M, et al. Image quality and radiation dose of a prospectively electrocardiography-triggered high-pitch data acquisition strategy for coronary CT angiography: the multicenter, randomized PROTECTION IV study. J Cardiovasc Comput Tomogr. 2015;9(4):278–85.

    Article  PubMed  Google Scholar 

  44. Seppelt D, Kolb C, Kühn JP, Speiser U, Radosa CG, Hoberück S, et al. Comparison of sequential and high-pitch-spiral coronary CT-angiography: image quality and radiation exposure. Int J Cardiovasc Imaging. Springer Netherlands. 2019;132:1–8.

    Google Scholar 

  45. Schoepf UJ, editor. CT of the heart. Totowa: Humana Press; 2019.

    Google Scholar 

  46. Detrano R, Guerci AD, Carr JJ, Bild DE, Burke G, Folsom AR, et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med. 2008;358(13):1336–45.

    Article  CAS  PubMed  Google Scholar 

  47. McCollough CH, Ulzheimer S, Halliburton SS, Shanneik K, White RD, Kalender WA. Coronary artery calcium: a multi-institutional, multimanufacturer international standard for quantification at cardiac CT1. Radiology. Radiological Society of North America. 2007.

    Google Scholar 

  48. Raggi P. Coronary calcium is all we need for risk assessment, yet we do not use it often enough. Atherosclerosis. 2019;282:167–8.

    Article  CAS  PubMed  Google Scholar 

  49. Takx RAP, Suchá D, Park J, Leiner T, Hoffmann U. Sublingual nitroglycerin Administration in Coronary Computed Tomography Angiography: a systematic review. Eur Radiol. Springer Berlin Heidelberg. 2015;25(12):3536–42.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Cury RC, Abbara S, Achenbach S, Agatston A, Berman DS, Budoff MJ, et al. CAD-RADS™: coronary artery disease – reporting and data system: an expert consensus document of the Society of Cardiovascular Computed Tomography (SCCT), the American College of Radiology (ACR) and the North American Society for Cardiovascular Imaging (NASCI). Endorsed by the American College of Cardiology. JACR. Elsevier. 2016;13(12):1458–9.

    PubMed  Google Scholar 

  51. Budoff MJ, Dowe D, Jollis JG, Gitter M, Sutherland J, Halamert E, et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (assessment by coronary computed tomographic angiography of individuals undergoing invasive coronary angiography) trial. JAC J Am Coll Cardiol. 2008;52(21):1724–32.

    Article  Google Scholar 

  52. Tonino PAL, De Bruyne B, Pijls NHJ, Siebert U, Ikeno F, vant Veer M, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med. 2009;360(3):213–24.

    Article  CAS  PubMed  Google Scholar 

  53. Xaplanteris P, Fournier S, Pijls NHJ, Fearon WF, Barbato E, Tonino PAL, et al. Five-year outcomes with PCI guided by fractional flow reserve. N Engl J Med. 2018;379(3):250–9.

    Article  PubMed  Google Scholar 

  54. Ko BS, Cameron JD, Munnur RK, Wong DTL, Fujisawa Y, Sakaguchi T, et al. Noninvasive CT-derived FFR based on structural and fluid analysis: a comparison with invasive FFR for detection of functionally significant stenosis. JACC Cardiovasc Imaging. 2017;10(6):663–73.

    Article  PubMed  Google Scholar 

  55. Koo B-K, Erglis A, Doh J-H, Daniels DV, Jegere S, Kim H-S, et al. Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms: results from the prospective multicenter DISCOVER-FLOW (diagnosis of ischemia-causing stenoses obtained via noninvasive fractional flow reserve) study. JAC J Am Coll Cardiol. 2011;58(19):1989–97.

    Article  Google Scholar 

  56. Fairbairn TA, Nieman K, Akasaka T, Nørgaard BL, Berman DS, Raff G, et al. Real-world clinical utility and impact on clinical decision-making of coronary computed tomography angiography-derived fractional flow reserve: lessons from the ADVANCE Registry. Eur Heart J. 2018;39(41):3701–11.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Nørgaard BL, Terkelsen CJ, Mathiassen ON, Grove EL, Bøtker HE, Parner E, et al. Coronary CT angiographic and flow reserve-guided management of patients with stable ischemic heart disease. JAC. Elsevier. 2018;72(18):2123–34.

    Google Scholar 

  58. Kitabata H, Leipsic J, Patel MR, Nieman K, De Bruyne B, Rogers C, et al. Incidence and predictors of lesion-specific ischemia by FFRCT: learnings from the international ADVANCE registry. J Cardiovasc Comput Tomogr. Elsevier. 2018;12(2):95–100.

    Article  PubMed  Google Scholar 

  59. Meijboom WB, Van Mieghem CAG, van Pelt N, Weustink A, Pugliese F, Mollet NR, et al. Comprehensive assessment of coronary artery stenoses: computed tomography coronary angiography versus conventional coronary angiography and correlation with fractional flow reserve in patients with stable angina. JAC. Elsevier. 2008;52(8):636–43.

    Google Scholar 

  60. Kim SY, Seo JB, Do K-H, Heo J-N, Lee JS, Song J-W, et al. Coronary artery anomalies: classification and ECG-gated multi–detector row CT findings with angiographic correlation. Radiographics. 2006;26(2):317–33.

    Article  PubMed  Google Scholar 

  61. Lee BY. Anomalous right coronary artery from the left coronary sinus with an interarterial course: is it really dangerous? Korean Circ J. 2009;39(5):175–9.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Cronin P, Sneider MB, Kazerooni EA, Kelly AM, Scharf C, Oral H, et al. MDCT of the left atrium and pulmonary veins in planning radiofrequency ablation for atrial fibrillation: a how-to guide. Am J Roentgenol. 2004;183(3):767–78.

    Article  Google Scholar 

  63. Jarcho JA. Biventricular pacing. N Engl J Med. 2006;355(3):288–94.

    Article  CAS  PubMed  Google Scholar 

  64. León AR, Abraham WT, Curtis AB, Daubert JP, Fisher WG, Gurley J, et al. Safety of transvenous cardiac resynchronization system implantation in patients with chronic heart failure: combined results of over 2,000 patients from a multicenter study program. J Am Coll Cardiol. 2005;46(12):2348–56.

    Article  PubMed  Google Scholar 

  65. Smith CR, Leon MB, Mack MJ, Miller DC, Moses JW, Svensson LG, et al. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N Engl J Med. 2011;364(23):2187–98.

    Article  CAS  PubMed  Google Scholar 

  66. Kamdar AR, Meadows TA, Roselli EE, Gorodeski EZ, Curtin RJ, Sabik JF, et al. Multidetector computed tomographic angiography in planning of reoperative cardiothoracic surgery. Ann Thorac Surg. 2008;85(4):1239–45.

    Article  PubMed  Google Scholar 

  67. Steinberg DH, Staubach S, Franke J, Sievert H. Defining structural heart disease in the adult patient: current scope, inherent challenges and future directions. Eur Heart J Suppl. 2010;12(Suppl E):E2–9.

    Article  Google Scholar 

  68. Chu LC, Johnson PT, Fishman EK. Cardiac CT angiography beyond the coronary arteries: what radiologists need to know and why they need to know it. Am J Roentgenol. American Roentgen Ray Society. 2014.

    Google Scholar 

  69. Pham N, Zaitoun H, Mohammed TL, DeLaPena-Almaguer E, Martinez F, Novaro GM, et al. Complications of aortic valve surgery: manifestations at CT and MR imaging. Radiographics. 2012;32(7):1873–92.

    Article  PubMed  Google Scholar 

  70. Wells JA, Condado JF, Kamioka N, Dong A, Ritter A, Lerakis S, et al. Outcomes after paravalvular leak closure: transcatheter versus surgical approaches. JACC Cardiovasc Interv. 2017;10(5):500–7.

    Article  PubMed  Google Scholar 

  71. Wagner A, Mahrholdt H, Holly TA, Elliott MD, Regenfus M, Parker M, et al. Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet. 2003;361(9355):374–9.

    Article  PubMed  Google Scholar 

  72. Kim RJ, Wu E, Rafael A, Chen EL, Parker MA, Simonetti O, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med. 2000;343(20):1445–53.

    Article  CAS  PubMed  Google Scholar 

  73. Bouleti C, Baudry G, Lung B, Arangalage D, Abtan J, Ducrocq G, et al. Usefulness of late iodine enhancement on spectral CT in acute myocarditis. JACC Cardiovasc Imaging. American College of Cardiology Foundation. 2017;10(7):826–7.

    Article  PubMed  Google Scholar 

  74. Bazan O, Ortiz JP. Duration of systole and diastole for hydrodynamic testing of prosthetic heart valves: comparison between ISO 5840 standards and in vivo studies. Braz J Cardiovasc Surg. 2016;31(2):171–3. https://doi.org/10.5935/1678-9741.20160036.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey D. Rubin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iranmanesh, A., Rubin, G.D. (2020). CT in Cardiac Applications. In: Samei, E., Pelc, N. (eds) Computed Tomography . Springer, Cham. https://doi.org/10.1007/978-3-030-26957-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26957-9_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26956-2

  • Online ISBN: 978-3-030-26957-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics