Skip to main content

Simulation in Cardiothoracic and Vascular Anesthesia

  • Chapter
  • First Online:
Comprehensive Healthcare Simulation: Anesthesiology

Part of the book series: Comprehensive Healthcare Simulation ((CHS))

  • 862 Accesses

Abstract

There has been increased use of simulation for medical training, continuing education, and crisis resource management. The quest for safety and quality has resulted in the development of realistic patient simulators and virtual reality devices which has enabled the mastery of complex procedures. This is especially true for the field of cardiothoracic and vascular anesthesiology in which the need for management of increasingly complex and difficult cases, as well as the performance of a variety of procedures and skill sets, necessitates advanced practice models. It is essential for providers to gain mastery of skill sets such as central line placement, bronchoscopy, transesophageal echocardiography, invasive pressure monitoring, and management of complex cardiac, thoracic, and vascular cases. Using tools such as anesthesia management software, bronchoscopy simulators, vascular access trainers, full-sized mannequin, and simulated cardiopulmonary bypass models, practitioners are able to gain experience in the management of infrequently seen diseases and complications and to develop skills required for team-based management in the field of cardiothoracic and vascular anesthesia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Accreditation Council for Graduate Medical Education. Report of the work group on resident duty hours and the learning. Environment. June 11, 2002; http://www.acgme.org.

  2. Stodel EJ, Wyand A, Crooks S, et al. Designing and implementing a competency based training program for anesthesiology residents at the University of Ottawa. Anesth Res and Pract. 2015; https://doi.org/10.1155/2015/713038.

    Article  Google Scholar 

  3. Morgan PJ, Cleave-Hogg D. A worldwide survey of the use of simulation in anesthesia. Can J Anesthesia. 2002;49:659–62.

    Article  Google Scholar 

  4. Wollard M, Whitfield R, Smith A, et al. Skill acquisition and retention in automated external defibrillator (AED) use and CPR by lay responders: a prospective study. Resuscitation. 2004;60:17–28.

    Article  Google Scholar 

  5. Jenison EL, Gil KM, Lendvay TS, Guy MS. Robotic surgical skills: acquisition, maintenance, and degradation. JSLS. 2012;16:218–28.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wayne DB, Butter J, Siddall VJ, et al. Mastery learning of advanced cardiac life support skills by internal medicine residents using simulation technology and deliberate practice. J Gen Intern Med. 2006;21(3):251–6.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Scheer B, Perel A, Pfeiffer UJ. Clinical review: complications and risk factors of peripheral arterial catheters used for haemodynamic monitoring in anaesthesia and intensive care medicine. Crit Care. 2002;6(3):199–204.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Burns SM, Chulay M. Essentials of critical care nursing pocket handbook. American Association of Critical Care Nurses (AACN). New York: McGraw-Hill Companies; 2006.

    Google Scholar 

  9. Denadai R, Toledo AP, Bernades DM, et al. Simulation based ultrasound guided central venous cannulation training program. Acta Cir Bras. 2014;29:1678–2674.

    Article  Google Scholar 

  10. Abboud PA, Kendall JL. Ultrasound guidance for vascular access. Emerg Med Clin North Am. 2004;22(3):749–73.

    Article  PubMed  Google Scholar 

  11. McGee DC, Gould MK. Preventing complications of central venous catheterization. N Engl J Med. 2003;348:1123–33.

    Article  PubMed  Google Scholar 

  12. Lampert M, Bodenham AR, Pittiruti M, et al. International evidence-based recommendations on ultrasound-guided vascular access. Intensive Care Med. 2012;38(7):1105–17.

    Article  Google Scholar 

  13. Dodge KL, Lynch CA, Moore CL, Biroscak BJ, et al. Use of ultrasound guidance improves central venous catheter insertion success rates among junior residents. J Ultrasound Med. 2012;31(10):1519–26.

    Article  PubMed  Google Scholar 

  14. Rupp SM, Apfelbaum JL, Blitt C, et al. American Society of Anesthesiologists Task Force on Central Venous Access. Practice guidelines for central venous access: a report by the American Society of Anesthesiologists Task Force on Central Venous Access. Anesthesiology. 2012;116(3):539–73.

    Article  PubMed  Google Scholar 

  15. O’Grady NP, Alexander M, Burns LA, et al. Healthcare Infection Control Practices Advisory Committee. Guidelines for the prevention of intravascular catheter-related infections. Am J Infect Control. 2011;39(4 Suppl 1):S1–34.

    Article  PubMed  Google Scholar 

  16. Barsuk JH, McGaghie WC, Cohen ER, et al. Simulation-based mastery learning reduces complications during central venous catheter insertion in a medical intensive care unit. Crit Care Med. 2009;37(10):2697–701.

    PubMed  Google Scholar 

  17. Barsuk JH, Cohen ER, Feinglass J, et al. Use of simulation-based education to reduce catheter-related bloodstream infections. Arch Intern Med. 2009; Aug 10;169(15):1420–3.

    Article  PubMed  Google Scholar 

  18. Cohen ER, Feinglass J, Barsuk JH, et al. Cost savings from reduced catheter-related bloodstream infection after simulation-based education for residents in a medical intensive care unit. Simul Healthcare. 2010; Apr;5(2):98–102.

    Article  Google Scholar 

  19. Bernstein WK, Walker A. Anesthetic issues for robotic cardiac surgery. Ann Card Anaesth. 2015;18:58–68.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bainton CR. Models to facilitate the learning of fiberoptic technique. Int Anestheiol Clin. 1994;32:47–55.

    Article  CAS  Google Scholar 

  21. Naik VN, Matsumoto ED, Houston PL, et al. Fiberoptic orotracheal intubation on anesthetized patients: do manipulation skills learned on simple model transfer into operating room? Anesthesiology. 2001;95:343–8.

    Article  CAS  PubMed  Google Scholar 

  22. Eason MP. Simulation devices in cardiothoracic and vascular anesthesia. Sem Cardiothor Vasc Anesth. 2015;9:309–23.

    Article  Google Scholar 

  23. Schaefer JJ III. Simulators and difficult airway management skills. Ped Anesthesia. 2004;14:28–37.

    Article  Google Scholar 

  24. Rowe R, Cohen RA. An evaluation of a virtual reality airway simulator. Anesth Analg. 2002;95:62–6.

    Article  PubMed  Google Scholar 

  25. Blum MG, Poers TW, Sundaresan S. Bronchoscopy simulator effectively prepares junior residents to competently perform basic clinical bronchoscopy. Ann Thorac Surg. 2004;78:287–91.

    Article  PubMed  Google Scholar 

  26. Colt HG, Crawford SW, Galbraith OIII. Virtual reality bronchoscopy simulation: a revolution in procedural training. Chest. 2001;120(4):1333–9.

    Article  CAS  PubMed  Google Scholar 

  27. Seymour NE, Gallagher AG, Roman SA, et al. Virtual reality training improves operating room performance: results of a randomized, double –blinded study. Ann Surg. 2002;236(4):458–63.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Failor E, Bowdle A, Jelacic C, Togashi K. High-fidelity simulation of lung isolation with double-lumen endotracheal tubes and bronchial blockers in anesthesiology resident training. J Cardiothorasc and VascAnesth. 2014;28(4):877–81.

    Google Scholar 

  29. Song H, Peng YG. Innovative transesophageal echocardiography training and competency assessment for Chinese anesthesiologists: role of transesophageal echocardiography simulation training. Curr Opin Anaesthesiol. 2012;25(6):686–91.

    PubMed  Google Scholar 

  30. Shakil O, Mahmood F, Matyal R. Simulation in echocardiography: an ever-expanding frontier. J Cardiothorac Vasc Anesth. 2012;26(3):476–85.

    Article  PubMed  Google Scholar 

  31. Matyal R, Bose R, Warraich H, Shahul S, Ratcliff S, Panzica P, et al. Transthoracic echocardiographic simulator: normal and the abnormal. J Cardiothorac Vasc Anesth. 2011;25(1):177–81.

    Article  PubMed  Google Scholar 

  32. Bose RR, Matyal R, Warraich HJ, et al. Utility of a transesophageal echocardiographic simulator as a teaching tool. J Cardiothorac Vasc Anesth. 2011;25:212–5.

    Article  PubMed  Google Scholar 

  33. Weidenbach M, et al. EchoComTEE-A simulator for transesophageal echocardiography. Anaesthesia. 2007;62:347–53.

    Article  CAS  PubMed  Google Scholar 

  34. Neelankavil J, Howard-Quijano K, Hsieh TC, et al. Transthoracic echocardiography simulation is an efficient method to train anesthesiologists in basic transthoracic echocardiography skills. Anesth Analg. 2012;115:1042–51.

    Article  PubMed  Google Scholar 

  35. Ferrero NA, Bortsov AV, Arora H, et al. Simulator training enhances resident performance in transesophageal echocardiography. Anesthesiology. 2014;120:149–59.

    Article  PubMed  Google Scholar 

  36. Nyssen A, Larbuisson R, Janssens M, et al. A comparison of the training value of two types of anesthesia simulators: computer screen-based and mannequin-based simulators. Anesth Analg. 2002;94:1560–5.

    Article  PubMed  Google Scholar 

  37. Schwid HA. Graphical anesthesia simulators gain widespread use. APSF.org 1996; http://www.apsf.org/resource_center/newsletter/1996/fall/graphsim.htm.

  38. Winchell SW, Safar P. Teaching and testing lay and paramedical personnel in cardiopulmonary resuscitation. Anesth Analg. 1966;45:441–9.

    Article  Google Scholar 

  39. Grenvik A, Schaefer JJ. From Resusci-Anne to Sim Man: the evolution of simulators in medicine. Crit Care Med. 2004;32:556–7.

    Article  Google Scholar 

  40. Safar P, Escarraga L, Elam J. A comparison of the mouth-to-mouth and mouth-to-airway methods of artificial respiration with the chest-pressure arm lift methods. N Engl J Med. 1958;258:671–7.

    Article  CAS  PubMed  Google Scholar 

  41. Safar P. Ventilatory efficacy of mouth-to-mouth artificial respiration. Airway obstruction during manual and mouth-to-mouth artificial respiration. JAMA. 1958;167:335–41.

    Article  CAS  Google Scholar 

  42. Gordon MS. Cardiology patient simulator: development of an automated manikin to teach cardiovascular disease. Am J Cardiol. 1974;34:350–5.

    Article  CAS  PubMed  Google Scholar 

  43. Gordon MS, Ewy GA, Felner JM, et al. Teaching bedside cardiologic examination skills using “Harvey,” the cardiology patient simulator. Med Clin North Am. 1980;64:305–13.

    Article  CAS  PubMed  Google Scholar 

  44. Cooper JB. Taqueti VR. A brief history of the development of mannequin simulators for clinical education and training. Qual Saf Health Care. 2004;13(suppl 1):11–8.

    Article  Google Scholar 

  45. Ewy GA, Felner JM, Juul D, et al. Test of a cardiology patient simulator with students in fourth-year electives. J Med Educ. 1987;62:738–43.

    CAS  PubMed  Google Scholar 

  46. Woolliscroft JO, Calhoun JG, Tenhaken JD, et al. Harvey: the impact of a cardiovascular teaching simulator on student skill acquisition. Med Teach. 1987;9:53–7.

    Article  CAS  PubMed  Google Scholar 

  47. Schwid HA, O’Donnell D. Anesthesiologists’ management of simulated critical incidents. Anesthesiology. 1992;76(4):495–501.

    Article  CAS  PubMed  Google Scholar 

  48. Stocker M, Allen M, Pool N, et al. Impact of an embedded simulation team training program in a pediatric intensive care unit: a prospective, single-center, longitudinal study. Intensive Care Med. 2012;38:99–104.

    Article  PubMed  Google Scholar 

  49. Figueroa M. The role of simulation. SCCM. 2015;. Retrieved from: www.sccm.org/Communications/Critical-Connections/Archives/Pages/The-Role-of-Simulation-in-Promoting-Multidisciplinary-Teamwork.aspx

  50. Trehan K, Kemp CD, Yang SC. Simulation in cardiothoracic surgical training: where do we stand? J Thorac Cardiovasc Surg. 2014;147:18–24.

    Article  PubMed  Google Scholar 

  51. McGaghie WC, Issenberg SB, Petusa ER, et al. A critical review of simulation-based medical education research 2003-2009. Med Educ. 2010;44:50–63.

    Article  PubMed  Google Scholar 

  52. Paige JT, Kozmenko V, Morgan B, et al. From the flight deck to the operating room: an initial pilot study of the feasibility and potential impact of true interdisciplinary team training using high-fidelity simulation. J Surg Educ. 2007;64(6):369–77.

    Article  PubMed  Google Scholar 

  53. Paige JT, Kozmenko V, Yang T, et al. High-fidelity, simulation-based, interdisciplinary operating room team training at the point of care. Surgery. 2009;145(2):138–46.

    Article  PubMed  Google Scholar 

  54. Bruppacher HR, Alam SK, LeBlanc VR, Latter D, Naik VN, Savoldelli GL, et al. Simulation-based training improves physicians’ performance in patient care in high-stakes clinical setting of cardiac surgery. Anesthesiology. 2010;112:985–92.

    Article  PubMed  Google Scholar 

  55. Feins RH. Expert commentary: cardiothoracic surgical simulation. JTCVS. 2008;135(3):485–6.

    Google Scholar 

  56. Feins RH, Burkhart HM, Conte JV, et al. Simulation-based training in cardiac surgery. Ann Thorac Surg. 2016; pii: S0003-4975(16)30773-1. doi:https://doi.org/10.1016/j.athoracsur.2016.06.062.

    Article  PubMed  Google Scholar 

  57. Morris RW, Pybus DA. Orpheus cardiopulmonary bypass simulation system. JECT. 2007;39:228–33.

    Google Scholar 

  58. Mierdl S, Byhahn C, Dogan S, et al. Segmental wall motion abnormalities during telerobotic totally endoscopic coronary artery bypass grafting. Anesth Analg. 2002;94:774–80.

    Article  PubMed  Google Scholar 

  59. Yuh DD, Simon BA, Fernandez-Bustamente A, et al. Totally endoscopic robot-assisted transmyocardial revascularization. J Thorac Cardiovasc Surg. 2005;130:120–4.

    Article  PubMed  Google Scholar 

  60. Bodner J, Wykypiel H, Greiner A, et al. Early experience with robot-assisted surgery for mediastinal masses. Ann Thorac Surg. 2004;78:259–66.

    Article  PubMed  Google Scholar 

  61. Jones BA, Krueger S, Howell D, et al. Robotic mitral valve repair. Tex Heart Inst J. 2005;32:143–6.

    PubMed  PubMed Central  Google Scholar 

  62. Coste-Maniere E, Adhami L, Mourgues F, Carpentier A. Planning, simulation, and augmented reality for robotic cardiac procedures: the STARS system of the ChIR team. Semin Thorac Cardiovasc Surg. 2003;15:141–56.

    Article  PubMed  Google Scholar 

  63. Talamini MA, Hanly EJ. Technology in the operating suite. JAMA. 2005;293:863–6.

    Article  CAS  PubMed  Google Scholar 

  64. Boulet JR, Murray DJ. Simulation based assessment in anesthesiology: requirements for practical implementation. Anesthesiology. 2010;112:1041–52.

    Article  PubMed  Google Scholar 

  65. Seymour NE, Gallagher AG, Roman SA, et al. Virtual reality training improves operating room performance: results of a randomized, double-blinded study. Ann Surg. 2002;236:458–63.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Ahlberg G, Enochsson L, Gallagher AG, et al. Proficiency-based virtual reality training significantly reduces the error rate for residents during their first 10 laparoscopic cholecystectomies. Am J Surg. 2007;193:797–804.

    Article  PubMed  Google Scholar 

  67. Fann JI, Feins RH, Hicks GL, et al. Evaluation of simulation training in cardiothoracic surgery: the senior tour perspective. J Thorac Cardiovasc Surg. 2012;143:264–72.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendy K. Bernstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bernstein, W.K., Schreibman, D.L. (2020). Simulation in Cardiothoracic and Vascular Anesthesia. In: Mahoney, B., Minehart, R., Pian-Smith, M. (eds) Comprehensive Healthcare Simulation: Anesthesiology . Comprehensive Healthcare Simulation. Springer, Cham. https://doi.org/10.1007/978-3-030-26849-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26849-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26848-0

  • Online ISBN: 978-3-030-26849-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics