Skip to main content

Regulation and Function of Autophagy During Ferroptosis

  • Chapter
  • First Online:
Ferroptosis in Health and Disease

Abstract

Autophagy is an evolutionarily conserved catabolic process that allows lysosomes to degrade distinct cytoplasmic components, including unused proteins, damaged organelles, and invading pathogens. In many cases, an increase in autophagy will function as a programmed survival mechanism to protect against stress, injury, and infection. In some cases, excessive autophagy can act as a programmed cell death mechanism to initiate or mediate various types of regulated cell death. More recently, dysfunctional autophagy has been found to lead to excessive degradation of cytosolic components to trigger ferroptosis, an iron- and lipid peroxidation-dependent type of cell death. In particular, certain types of selective autophagy, such as ferritinophagy, lipophagy, clockophagy, and chaperone-mediated autophagy, contribute to iron accumulation and free radical damage during ferroptosis. Additionally, the autophagy core regulator BECN1 can promote ferroptosis through the control of the exchange of extracellular cystine and glutamate across the cellular plasma via binding to SLC7A11, a component of amino acid antiporter system xc . Moreover, autophagy-mediated HMGB1 release is implicated in inflammation during ferroptotic cell death. These findings suggest that ferroptosis is a type of autophagy-dependent cell death. Here we summarize the mechanisms that regulate autophagy and how they may contribute to ferroptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alborzinia H, Ignashkova TI, Dejure FR et al (2018) Golgi stress mediates redox imbalance and ferroptosis in human cells. Commun Biol 1:210

    Article  PubMed  PubMed Central  Google Scholar 

  • Alers S, Loffler AS, Wesselborg S, Stork B (2012) Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol Cell Biol 32:2–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai Y, Meng L, Han L et al (2019) Lipid storage and lipophagy regulates ferroptosis. Biochem Biophys Res Commun 508:997–1003

    Article  CAS  PubMed  Google Scholar 

  • Brown CW, Amante JJ, Goel HL, Mercurio AM (2017) The alpha6beta4 integrin promotes resistance to ferroptosis. J Cell Biol 216:4287–4297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canli O, Alankus YB, Grootjans S et al (2016) Glutathione peroxidase 4 prevents necroptosis in mouse erythroid precursors. Blood 127:139–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao JY, Poddar A, Magtanong L et al (2019) A genome-wide haploid genetic screen identifies regulators of glutathione abundance and ferroptosis sensitivity. Cell Rep 26:1544–1556.e1548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen D, Tavana O, Chu B et al (2017) NRF2 is a major target of ARF in p53-independent tumor suppression. Mol Cell 68:224–232.e224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheong H, Lindsten T, Wu J, Lu C, Thompson CB (2011) Ammonia-induced autophagy is independent of ULK1/ULK2 kinases. Proc Natl Acad Sci USA 108:11121–11126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiou B, Connor JR (2018) Emerging and dynamic biomedical uses of ferritin. Pharmaceuticals (Basel) 11:4

    Article  CAS  PubMed Central  Google Scholar 

  • Cole-Ezea P, Swan D, Shanley D, Hesketh J (2012) Glutathione peroxidase 4 has a major role in protecting mitochondria from oxidative damage and maintaining oxidative phosphorylation complexes in gut epithelial cells. Free Radic Biol Med 53:488–497

    Article  CAS  PubMed  Google Scholar 

  • Crielaard BJ, Lammers T, Rivella S (2017) Targeting iron metabolism in drug discovery and delivery. Nat Rev Drug Discov 16:400–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das G, Shravage BV, Baehrecke EH (2012) Regulation and function of autophagy during cell survival and cell death. Cold Spring Harb Perspect Biol 4:pii: a008813

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Denton D, Kumar S (2019) Autophagy-dependent cell death. Cell Death Differ 26:605–616

    Article  CAS  PubMed  Google Scholar 

  • Dikic I, Elazar Z (2018) Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol 19:349–364

    Article  CAS  PubMed  Google Scholar 

  • Dixon SJ, Lemberg KM, Lamprecht MR et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149:1060–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doll S, Proneth B, Tyurina YY et al (2017) ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol 13:91–98

    Article  CAS  PubMed  Google Scholar 

  • Du J, Wang T, Li Y et al (2018) DHA inhibits proliferation and induces ferroptosis of leukemia cells through autophagy dependent degradation of ferritin. Free Radic Biol Med 131:356–369

    Article  PubMed  CAS  Google Scholar 

  • Du J, Wang T, Li Y et al (2019) DHA inhibits proliferation and induces ferroptosis of leukemia cells through autophagy dependent degradation of ferritin. Free Radic Biol Med 131:356–369

    Article  CAS  PubMed  Google Scholar 

  • Fan W, Nassiri A, Zhong Q (2011) Autophagosome targeting and membrane curvature sensing by Barkor/Atg14(L). Proc Natl Acad Sci USA 108:7769–7774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan Z, Wirth AK, Chen D et al (2017) Nrf2-Keap1 pathway promotes cell proliferation and diminishes ferroptosis. Oncogenesis 6:e371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedmann Angeli JP, Schneider M, Proneth B et al (2014) Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol 16:1180–1191

    Article  CAS  PubMed  Google Scholar 

  • Galluzzi L, Vitale I, Aaronson SA et al (2018) Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 25:486–541

    Article  PubMed  PubMed Central  Google Scholar 

  • Ganley IG, du Lam H, Wang J, Ding X, Chen S, Jiang X (2009) ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem 284:12297–12305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao M, Monian P, Pan Q, Zhang W, Xiang J, Jiang X (2016) Ferroptosis is an autophagic cell death process. Cell Res 26:1021–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao H, Bai Y, Jia Y et al (2018) Ferroptosis is a lysosomal cell death process. Biochem Biophys Res Commun 503:1550–1556

    Article  CAS  PubMed  Google Scholar 

  • Gao M, Yi J, Zhu J et al (2019) Role of mitochondria in ferroptosis. Mol Cell 73:354–363.e353

    Article  CAS  PubMed  Google Scholar 

  • Geng N, Shi BJ, Li SL et al (2018) Knockdown of ferroportin accelerates erastin-induced ferroptosis in neuroblastoma cells. Eur Rev Med Pharmacol Sci 22:3826–3836

    CAS  PubMed  Google Scholar 

  • Green DR, Levine B (2014) To be or not to be? How selective autophagy and cell death govern cell fate. Cell 157:65–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanada T, Noda NN, Satomi Y et al (2007) The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem 282:37298–37302

    Article  CAS  PubMed  Google Scholar 

  • Hao Y, Kacal M, Ouchida AT, Zhang B, Norberg E, Vakifahmetoglu-Norberg H (2019) Targetome analysis of chaperone-mediated autophagy in cancer cells. Autophagy. https://doi.org/10.1080/15548627.2019.1586255. [Epub ahead of print]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harding TM, Morano KA, Scott SV, Klionsky DJ (1995) Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway. J Cell Biol 131:591–602

    Article  CAS  PubMed  Google Scholar 

  • Herman PK, Emr SD (1990) Characterization of VPS34, a gene required for vacuolar protein sorting and vacuole segregation in Saccharomyces cerevisiae. Mol Cell Biol 10:6742–6754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosokawa N, Hara T, Kaizuka T et al (2009) Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell 20:1981–1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou W, Xie Y, Song X et al (2016) Autophagy promotes ferroptosis by degradation of ferritin. Autophagy 12:1425–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang C, Yang M, Deng J, Li P, Su W, Jiang R (2018) Upregulation and activation of p53 by erastininduced reactive oxygen species contribute to cytotoxic and cytostatic effects in A549 lung cancer cells. Oncol Rep 40:2363–2370

    CAS  PubMed  Google Scholar 

  • Huo H, Zhou Z, Qin J, Liu W, Wang B, Gu Y (2016) Erastin disrupts mitochondrial permeability transition pore (mPTP) and induces apoptotic death of colorectal cancer cells. PLoS One 11:e0154605

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ichimura Y, Imamura Y, Emoto K, Umeda M, Noda T, Ohsumi Y (2004) In vivo and in vitro reconstitution of Atg8 conjugation essential for autophagy. J Biol Chem 279:40584–40592

    Article  CAS  PubMed  Google Scholar 

  • Itakura E, Kishi C, Inoue K, Mizushima N (2008) Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol Biol Cell 19:5360–5372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaber N, Dou Z, Lin RZ, Zhang J, Zong WX (2012) Mammalian PIK3C3/VPS34: the key to autophagic processing in liver and heart. Autophagy 8:707–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johansen T, Lamark T (2011) Selective autophagy mediated by autophagic adapter proteins. Autophagy 7:279–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joo JH, Wang B, Frankel E et al (2016) The noncanonical role of ULK/ATG1 in ER-to-Golgi trafficking is essential for cellular homeostasis. Mol Cell 62:491–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kagan VE, Mao G, Qu F et al (2017) Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol 13:81–90

    Article  CAS  PubMed  Google Scholar 

  • Kan CF, Singh AB, Stafforini DM, Azhar S, Liu J (2014) Arachidonic acid downregulates acyl-CoA synthetase 4 expression by promoting its ubiquitination and proteasomal degradation. J Lipid Res 55:1657–1667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang R, Tang D (2017) Autophagy and ferroptosis – what’s the connection? Curr Pathobiol Rep 5:153–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang R, Tang D, Schapiro NE et al (2010) The receptor for advanced glycation end products (RAGE) sustains autophagy and limits apoptosis, promoting pancreatic tumor cell survival. Cell Death Differ 17:666–676

    Article  CAS  PubMed  Google Scholar 

  • Kang R, Zeh HJ, Lotze MT, Tang D (2011) The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ 18:571–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang R, Chen R, Zhang Q et al (2014) HMGB1 in health and disease. Mol Asp Med 40:1–116

    Article  CAS  Google Scholar 

  • Kang R, Zhu S, Zeh HJ, Klionsky DJ, Tang D (2018a) BECN1 is a new driver of ferroptosis. Autophagy 14:2173–2175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang R, Zeng L, Zhu S et al (2018b) Lipid peroxidation drives gasdermin D-mediated pyroptosis in lethal polymicrobial sepsis. Cell Host Microbe 24:97–108.e104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaushik S, Cuervo AM (2018) The coming of age of chaperone-mediated autophagy. Nat Rev Mol Cell Biol 19:365–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Kundu M, Viollet B, Guan KL (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13:132–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290:1717–1721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klionsky DJ, Abdelmohsen K, Abe A et al (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12:1–222

    Article  PubMed  PubMed Central  Google Scholar 

  • Kong Z, Liu R, Cheng Y (2019) Artesunate alleviates liver fibrosis by regulating ferroptosis signaling pathway. Biomed Pharmacother 109:2043–2053

    Article  CAS  PubMed  Google Scholar 

  • Kourtis N, Tavernarakis N (2009) Autophagy and cell death in model organisms. Cell Death Differ 16:21–30

    Article  CAS  PubMed  Google Scholar 

  • Kreuzaler PA, Staniszewska AD, Li W et al (2011) Stat3 controls lysosomal-mediated cell death in vivo. Nat Cell Biol 13:303–309

    Article  CAS  PubMed  Google Scholar 

  • Kriel J, Loos B (2019) The good, the bad and the autophagosome: exploring unanswered questions of autophagy-dependent cell death. Cell Death Differ 26:640–652

    Article  PubMed  PubMed Central  Google Scholar 

  • Kroemer G, Jaattela M (2005) Lysosomes and autophagy in cell death control. Nat Rev Cancer 5:886–897

    Article  CAS  PubMed  Google Scholar 

  • Kroemer G, Marino G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40:280–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kundu M (2011) ULK1, mammalian target of rapamycin, and mitochondria: linking nutrient availability and autophagy. Antioxid Redox Signal 14:1953–1958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee EJ, Tournier C (2011) The requirement of uncoordinated 51-like kinase 1 (ULK1) and ULK2 in the regulation of autophagy. Autophagy 7:689–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewerenz J, Hewett SJ, Huang Y et al (2013) The cystine/glutamate antiporter system x(c)(-) in health and disease: from molecular mechanisms to novel therapeutic opportunities. Antioxid Redox Signal 18:522–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Zhang Y, Cheng X et al (2018) PINK1 and PARK2 suppress pancreatic tumorigenesis through control of mitochondrial iron-mediated immunometabolism. Dev Cell 46:441–455.e448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang C, Feng P, Ku B et al (2006) Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat Cell Biol 8:688–699

    Article  CAS  PubMed  Google Scholar 

  • Liang C, Lee JS, Inn KS et al (2008) Beclin1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocytic trafficking. Nat Cell Biol 10:776–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang H, Yoo SE, Na R, Walter CA, Richardson A, Ran Q (2009) Short form glutathione peroxidase 4 is the essential isoform required for survival and somatic mitochondrial functions. J Biol Chem 284:30836–30844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin MG, Hurley JH (2016) Structure and function of the ULK1 complex in autophagy. Curr Opin Cell Biol 39:61–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin R, Zhang Z, Chen L et al (2016) Dihydroartemisinin (DHA) induces ferroptosis and causes cell cycle arrest in head and neck carcinoma cells. Cancer Lett 381:165–175

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Czaja MJ (2013) Regulation of lipid stores and metabolism by lipophagy. Cell Death Differ 20:3–11

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Wang K (2019) The induction of ferroptosis by impairing STAT3/Nrf2/GPx4 signaling enhances the sensitivity of osteosarcoma cells to cisplatin. Cell Biol Int. https://doi.org/10.1002/cbin.11121. [Epub ahead of print]

  • Luo M, Wu L, Zhang K et al (2018) miR-137 regulates ferroptosis by targeting glutamine transporter SLC1A5 in melanoma. Cell Death Differ 25:1457–1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mack HI, Zheng B, Asara JM, Thomas SM (2012) AMPK-dependent phosphorylation of ULK1 regulates ATG9 localization. Autophagy 8:1197–1214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mancias JD, Wang X, Gygi SP, Harper JW, Kimmelman AC (2014) Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 509:105–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mancias JD, Pontano Vaites L, Nissim S et al (2015) Ferritinophagy via NCOA4 is required for erythropoiesis and is regulated by iron dependent HERC2-mediated proteolysis. elife 4:e10308

    Article  PubMed Central  Google Scholar 

  • Mercer CA, Kaliappan A, Dennis PB (2009) A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy. Autophagy 5:649–662

    Article  CAS  PubMed  Google Scholar 

  • Mizushima N (2010) The role of the Atg1/ULK1 complex in autophagy regulation. Curr Opin Cell Biol 22:132–139

    Article  CAS  PubMed  Google Scholar 

  • Muller T, Dewitz C, Schmitz J et al (2017) Necroptosis and ferroptosis are alternative cell death pathways that operate in acute kidney failure. Cell Mol Life Sci 74:3631–3645

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murrow L, Debnath J (2013) Autophagy as a stress-response and quality-control mechanism: implications for cell injury and human disease. Annu Rev Pathol 8:105–137

    Article  CAS  PubMed  Google Scholar 

  • Nakamura S, Yoshimori T (2017) New insights into autophagosome-lysosome fusion. J Cell Sci 130:1209–1216

    Article  CAS  PubMed  Google Scholar 

  • Nakatogawa H, Ichimura Y, Ohsumi Y (2007) Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 130:165–178

    Article  CAS  PubMed  Google Scholar 

  • Nakatogawa H, Ishii J, Asai E, Ohsumi Y (2012) Atg4 recycles inappropriately lipidated Atg8 to promote autophagosome biogenesis. Autophagy 8:177–186

    Article  CAS  PubMed  Google Scholar 

  • Nazio F, Strappazzon F, Antonioli M et al (2013) mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat Cell Biol 15:406–416

    Article  CAS  PubMed  Google Scholar 

  • Otomo C, Metlagel Z, Takaesu G, Otomo T (2013) Structure of the human ATG12~ATG5 conjugate required for LC3 lipidation in autophagy. Nat Struct Mol Biol 20:59–66

    Article  CAS  PubMed  Google Scholar 

  • Pankiv S, Clausen TH, Lamark T et al (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282:24131–24145

    Article  CAS  PubMed  Google Scholar 

  • Paz Y, Elazar Z, Fass D (2000) Structure of GATE-16, membrane transport modulator and mammalian ortholog of autophagocytosis factor Aut7p. J Biol Chem 275:25445–25450

    Article  CAS  PubMed  Google Scholar 

  • Platini F, Perez-Tomas R, Ambrosio S, Tessitore L (2010) Understanding autophagy in cell death control. Curr Pharm Des 16:101–113

    Article  CAS  PubMed  Google Scholar 

  • Ran Q, Van Remmen H, Gu M et al (2003) Embryonic fibroblasts from Gpx4+/- mice: a novel model for studying the role of membrane peroxidation in biological processes. Free Radic Biol Med 35:1101–1109

    Article  CAS  PubMed  Google Scholar 

  • Ran Q, Liang H, Gu M et al (2004) Transgenic mice overexpressing glutathione peroxidase 4 are protected against oxidative stress-induced apoptosis. J Biol Chem 279:55137–55146

    Article  CAS  PubMed  Google Scholar 

  • Ran Q, Gu M, Van Remmen H, Strong R, Roberts JL, Richardson A (2006) Glutathione peroxidase 4 protects cortical neurons from oxidative injury and amyloid toxicity. J Neurosci Res 84:202–208

    Article  CAS  PubMed  Google Scholar 

  • Roh JL, Kim EH, Jang H, Shin D (2017) Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis. Redox Biol 11:254–262

    Article  CAS  PubMed  Google Scholar 

  • Sakoh-Nakatogawa M, Matoba K, Asai E et al (2013) Atg12-Atg5 conjugate enhances E2 activity of Atg3 by rearranging its catalytic site. Nat Struct Mol Biol 20:433–439

    Article  CAS  PubMed  Google Scholar 

  • Sargeant TJ, Lloyd-Lewis B, Resemann HK, Ramos-Montoya A, Skepper J, Watson CJ (2014) Stat3 controls cell death during mammary gland involution by regulating uptake of milk fat globules and lysosomal membrane permeabilization. Nat Cell Biol 16:1057–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z (2007) Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 26:1749–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schu PV, Takegawa K, Fry MJ, Stack JH, Waterfield MD, Emr SD (1993) Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science 260:88–91

    Article  CAS  PubMed  Google Scholar 

  • Seiler A, Schneider M, Forster H et al (2008) Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death. Cell Metab 8:237–248

    Article  CAS  PubMed  Google Scholar 

  • Shimada K, Skouta R, Kaplan A et al (2016) Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nat Chem Biol 12:497–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh R, Kaushik S, Wang Y et al (2009) Autophagy regulates lipid metabolism. Nature 458:1131–1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song X, Zhu S, Chen P et al (2018) AMPK-mediated BECN1 phosphorylation promotes ferroptosis by directly blocking system Xc(-) activity. Curr Biol 28:2388–2399.e2385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stack JH, Herman PK, Schu PV, Emr SD (1993) A membrane-associated complex containing the Vps15 protein kinase and the Vps34 PI 3-kinase is essential for protein sorting to the yeast lysosome-like vacuole. EMBO J 12:2195–2204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stockwell BR, Friedmann Angeli JP, Bayir H et al (2017) Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171:273–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X, Ou Z, Chen R et al (2016a) Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology 63:173–184

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Niu X, Chen R et al (2016b) Metallothionein-1G facilitates sorafenib resistance through inhibition of ferroptosis. Hepatology 64:488–500

    Article  CAS  PubMed  Google Scholar 

  • Tang D, Kang R, Livesey KM et al (2010) Endogenous HMGB1 regulates autophagy. J Cell Biol 190:881–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang D, Kang R, Livesey KM et al (2011) High-mobility group box 1 is essential for mitochondrial quality control. Cell Metab 13:701–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanida I, Komatsu M, Ueno T, Kominami E (2003) GATE-16 and GABARAP are authentic modifiers mediated by Apg7 and Apg3. Biochem Biophys Res Commun 300:637–644

    Article  CAS  PubMed  Google Scholar 

  • Telorack M, Meyer M, Ingold I, Conrad M, Bloch W, Werner S (2016) A glutathione-Nrf2-thioredoxin cross-talk ensures keratinocyte survival and efficient wound repair. PLoS Genet 12:e1005800

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thorburn J, Horita H, Redzic J, Hansen K, Frankel AE, Thorburn A (2009) Autophagy regulates selective HMGB1 release in tumor cells that are destined to die. Cell Death Differ 16:175–183

    Article  CAS  PubMed  Google Scholar 

  • Thumm M, Egner R, Koch B et al (1994) Isolation of autophagocytosis mutants of Saccharomyces cerevisiae. FEBS Lett 349:275–280

    Article  CAS  PubMed  Google Scholar 

  • Torii S, Shintoku R, Kubota C et al (2016) An essential role for functional lysosomes in ferroptosis of cancer cells. Biochem J 473:769–777

    Article  CAS  PubMed  Google Scholar 

  • Tsukada M, Ohsumi Y (1993) Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett 333:169–174

    Article  CAS  PubMed  Google Scholar 

  • Wang YQ, Chang SY, Wu Q et al (2016) The protective role of mitochondrial ferritin on erastin-induced ferroptosis. Front Aging Neurosci 8:308

    PubMed  PubMed Central  Google Scholar 

  • Wen Q, Liu J, Kang R, Zhou B, Tang D (2019) The release and activity of HMGB1 in ferroptosis. Biochem Biophys Res Commun 510:278–283

    Article  CAS  PubMed  Google Scholar 

  • Wong PM, Puente C, Ganley IG, Jiang X (2013) The ULK1 complex: sensing nutrient signals for autophagy activation. Autophagy 9:124–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Z, Geng Y, Lu X et al (2019) Chaperone-mediated autophagy is involved in the execution of ferroptosis. Proc Natl Acad Sci USA 116:2996–3005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Y, Kang R, Sun X et al (2015) Posttranslational modification of autophagy-related proteins in macroautophagy. Autophagy 11:28–45

    Article  PubMed  CAS  Google Scholar 

  • Xie Y, Hou W, Song X et al (2016) Ferroptosis: process and function. Cell Death Differ 23:369–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Klionsky DJ (2010) Eaten alive: a history of macroautophagy. Nat Cell Biol 12:814–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang WS, Stockwell BR (2008) Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol 15:234–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang WS, SriRamaratnam R, Welsch ME et al (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156:317–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang M, Liu J, Zhu S, Kroemer G, Klionsky D, Lotze M, Zeh H, Kang R, Tang D (2019) Clockophagy is a novel selective autophagy process favoring ferroptosis. Sci Adv 5:aaw2238

    Article  Google Scholar 

  • Young AR, Chan EY, Hu XW et al (2006) Starvation and ULK1-dependent cycling of mammalian Atg9 between the TGN and endosomes. J Cell Sci 119:3888–3900

    Article  CAS  PubMed  Google Scholar 

  • Yu ZQ, Ni T, Hong B et al (2012) Dual roles of Atg8-PE deconjugation by Atg4 in autophagy. Autophagy 8:883–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Y, Xie Y, Cao L et al (2015a) The ferroptosis inducer erastin enhances sensitivity of acute myeloid leukemia cells to chemotherapeutic agents. Mol Cell Oncol 2:e1054549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu Y, Tang D, Kang R (2015b) Oxidative stress-mediated HMGB1 biology. Front Physiol 6:93

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan H, Li X, Zhang X, Kang R, Tang D (2016) Identification of ACSL4 as a biomarker and contributor of ferroptosis. Biochem Biophys Res Commun 478:1338–1343

    Article  CAS  PubMed  Google Scholar 

  • Zaffagnini G, Martens S (2016) Mechanisms of selective autophagy. J Mol Biol 428:1714–1724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zechner R, Madeo F, Kratky D (2017) Cytosolic lipolysis and lipophagy: two sides of the same coin. Nat Rev Mol Cell Biol 18:671–684

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Kang R, Zeh HJ 3rd, Lotze MT, Tang D (2013) DAMPs and autophagy: cellular adaptation to injury and unscheduled cell death. Autophagy 9:451–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Yao Z, Wang L et al (2018) Activation of ferritinophagy is required for the RNA-binding protein ELAVL1/HuR to regulate ferroptosis in hepatic stellate cells. Autophagy 14:2083–2103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Wang F (2010) Effects of neuronal PIK3C3/Vps34 deletion on autophagy and beyond. Autophagy 6:798–799

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou B, Liu J, Kang R, Klionsky DJ, Kroemer G, Tang D (2019) Ferroptosis is a type of autophagy-dependent cell death. Semin Cancer Biol. https://doi.org/10.1016/j.semcancer.2019.03.002. [Epub ahead of print]

  • Zhu S, Zhang Q, Sun X et al (2017) HSPA5 regulates ferroptotic cell death in cancer cells. Cancer Res 77:2064–2077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We apologize to the researchers who were not referenced due to space limitations. We thank Dave Primm (Department of Surgery, University of Texas Southwestern Medical Center) for his critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daolin Tang or Rui Kang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tang, D., Kang, R. (2019). Regulation and Function of Autophagy During Ferroptosis. In: Tang, D. (eds) Ferroptosis in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-26780-3_3

Download citation

Publish with us

Policies and ethics