Skip to main content

Bacterial Resistance to Phage and Its Impact on Clinical Therapy

  • Chapter
  • First Online:
Phage Therapy: A Practical Approach

Abstract

Antibiotic resistance has incited a renewed interest in phage therapy as an alternative treatment option for bacterial infections. The potential risk of incurring a parallel situation of resistance to phage as to that observed with antibiotics is a veritable concern for evaluating the merits of this therapy. Bacterial resistance to phage is indeed a natural phenomenon but which requires a greater understanding of bacteria–phage interactions and treatment paradigms in order to determine its impact on therapeutic utility. This chapter aims to contextualize this knowledge within the available applied studies in animals and clinical medicine published to date. Options to use phage combinations or implement protocols that allow for phage substitution or combination with antibiotics may mitigate the risk of developing resistance to phage or even antibiotics themselves. While resistance can be anticipated with phage therapy, it is possible to circumvent its negative effects on clinical outcomes, or, in some situations, it may even be a silver lining that could contribute to effective treatment of bacterial infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham EP, Chain E (1988) An enzyme from bacteria able to destroy penicillin. 1940. Rev Infect Dis 10(4):677–678

    Article  CAS  PubMed  Google Scholar 

  • Allen RC et al (2017) Associations among antibiotic and phage resistance phenotypes in natural and clinical Escherichia coli isolates. MBio 8(5):e01341-17

    Article  PubMed  PubMed Central  Google Scholar 

  • Appelmans R (1921) Le dosage du bacteriophages. CR Soc Biol 85:1098–1099

    Google Scholar 

  • Aslam S et al (2018) Bacteriophage treatment in a lung transplant recipient. J Heart Lung Transplant 37(4):S155–S156

    Article  Google Scholar 

  • Atterbury RJ et al (2007) Bacteriophage therapy to reduce Salmonella colonization of broiler chickens. Appl Environ Microbiol 73(14):4543–4549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrangou R et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315(5819):1709–1712

    Article  CAS  PubMed  Google Scholar 

  • Bertozzi Silva J et al (2016) Host receptors for bacteriophage adsorption. FEMS Microbiol Lett 363(4):fnw002

    Article  PubMed  CAS  Google Scholar 

  • Betts A et al (2013) Back to the future: evolving bacteriophages to increase their effectiveness against the pathogen Pseudomonas aeruginosa PAO1. Evol Appl 6(7):1054–1063

    PubMed  PubMed Central  Google Scholar 

  • Betts A et al (2014) Contrasted coevolutionary dynamics between a bacterial pathogen and its bacteriophages. Proc Natl Acad Sci 111(30):11109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bishop-Lilly KA et al (2012) Whole genome sequencing of phage resistant Bacillus anthracis mutants reveals an essential role for cell surface anchoring protein CsaB in phage AP50c adsorption. Virol J 9(1):246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradley DE (1972) Shortening of Pseudomonas aeruginosa pili after RNA-phage adsorption. J Gen Microbiol 72(2):303–319

    Article  CAS  PubMed  Google Scholar 

  • Buckling A, Rainey PB (2002) Antagonistic coevolution between a bacterium and a bacteriophage. Proc R Soc B Biol Sci 269(1494):931–936

    Article  Google Scholar 

  • Capparelli R et al (2010) Bacteriophage-resistant Staphylococcus aureus mutant confers broad immunity against staphylococcal infection in mice. PLoS One 5(7):e11720

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carvalho CM et al (2010) The in vivo efficacy of two administration routes of a phage cocktail to reduce numbers of Campylobacter coli and Campylobacter jejuni in chickens. BMC Microbiol 10(1):232

    Article  PubMed  PubMed Central  Google Scholar 

  • Chan BK et al (2016) Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa. Sci Rep 6:26717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan BK et al (2018) Phage treatment of an aortic graft infected with Pseudomonas aeruginosa. Evol Med Public Health 2018(1):60–66

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang Y et al (2015) Isolation and genome characterization of the virulent Staphylococcus aureus bacteriophage SA97. Viruses 7(10):5225–5242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comeau AM et al (2007) Phage-antibiotic synergy (PAS): beta-lactam and quinolone antibiotics stimulate virulent phage growth. PLoS One 2(8):e799

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • d’Hérelle F (1917) Sur un microbe invisible antagoniste des bacilles dysentériques. Comptes Rendus de l’Académie des Sciences—Series D 165:373–375

    Google Scholar 

  • d’Hérelle F (1931) Bacteriophage as a treatment in acute medical and surgical infections. Bull N Y Acad Med 7(5):329–348

    PubMed  PubMed Central  Google Scholar 

  • Dale JL et al (2015) Multiple roles for Enterococcus faecalis glycosyltransferases in biofilm-associated antibiotic resistance, cell envelope integrity, and conjugative transfer. Antimicrob Agents Chemother 59(7):4094–4105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dennehy JJ (2012) What can phages tell us about host-pathogen coevolution? Int J Evol Biol 2012:12

    Article  Google Scholar 

  • Doron S et al (2018) Systematic discovery of antiphage defense systems in the microbial pangenome. Science 359(6379):eaar4120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duerkop BA et al (2016) Molecular basis for lytic bacteriophage resistance in enterococci. MBio 7(4):e01304-16

    Article  PubMed  PubMed Central  Google Scholar 

  • Duplessis C et al (2018) Refractory Pseudomonas bacteremia in a 2-year-old sterilized by bacteriophage therapy. J Pediatric Infect Dis Soc 7(3):253–256

    Article  CAS  PubMed  Google Scholar 

  • Eaton MD, Bayne-Jones S (1934) Bacteriophage therapy: review of the principles and results of the use of bacteriophage in the treatment of infections. J Am Med Assoc 103(23):1769–1776

    Article  CAS  Google Scholar 

  • Estrella LA et al (2016) Characterization of novel Staphylococcus aureus lytic phage and defining their combinatorial virulence using the OmniLog® system. Bacteriophage 6(3):e1219440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faruque SM et al (2005) Self-limiting nature of seasonal cholera epidemics: role of host-mediated amplification of phage. Proc Natl Acad Sci 102(17):6119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filippov AA et al (2011) Bacteriophage-resistant mutants in Yersinia pestis: identification of phage receptors and attenuation for mice. PLoS One 6(9):e25486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friman VP et al (2016) Pre-adapting parasitic phages to a pathogen leads to increased pathogen clearance and lowered resistance evolution with Pseudomonas aeruginosa cystic fibrosis bacterial isolates. J Evol Biol 29(1):188–198

    Article  PubMed  Google Scholar 

  • Furr CLL et al (2018) P084 bacteriophage treatment of multidrug-resistant Pseudomonas aeruginosa pneumonia in a cystic fibrosis patient. J Cyst Fibros 17:S83

    Article  Google Scholar 

  • Garrido-Mesa N et al (2013) Minocycline: far beyond an antibiotic. Br J Pharmacol 169(2):337–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Górski A et al (2016) Phage therapy: combating infections with potential for evolving from merely a treatment for complications to targeting diseases. Front Microbiol 7:1515

    Article  PubMed  PubMed Central  Google Scholar 

  • Guerrero-Ferreira RC et al (2011) Alternative mechanism for bacteriophage adsorption to the motile bacterium Caulobacter crescentus. Proc Natl Acad Sci U S A 108(24):9963–9968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall AR et al (2011a) Bacteria-phage coevolution and the emergence of generalist pathogens. Am Nat 177(1):44–53

    Article  PubMed  Google Scholar 

  • Hall AR et al (2011b) Host-parasite coevolutionary arms races give way to fluctuating selection. Ecol Lett 14(7):635–642

    Article  PubMed  Google Scholar 

  • Ho K et al (2018) Loss-of-function mutations in epaR confer resistance to ϕNPV1 infection in Enterococcus faecalis OG1RF. Antimicrob Agents Chemother 62(10):e00758-18

    Article  PubMed  PubMed Central  Google Scholar 

  • Hung CH et al (2011) Experimental phage therapy in treating Klebsiella pneumoniae-mediated liver abscesses and bacteremia in mice. Antimicrob Agents Chemother 55(4):1358–1365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson SA et al (2017) CRISPR-Cas: adapting to change. Science 356(6333):eaal5056

    Article  PubMed  CAS  Google Scholar 

  • Jann K, Jann B (1992) Capsules of Escherichia coli, expression and biological significance. Can J Microbiol 38(7):705–710

    Article  CAS  PubMed  Google Scholar 

  • Jault P et al (2019) Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial. Lancet Infect Dis 19(1):35–45

    Article  PubMed  Google Scholar 

  • Jennes S et al (2017) Use of bacteriophages in the treatment of colistin-only-sensitive Pseudomonas aeruginosa septicaemia in a patient with acute kidney injury—a case report. Crit Care 21(1):129

    Article  PubMed  PubMed Central  Google Scholar 

  • Jo A et al (2016) Role of phage-antibiotic combination in reducing antibiotic resistance in Staphylococcus aureus. Food Sci Biotechnol 25(4):1211–1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khawaldeh A et al (2011) Bacteriophage therapy for refractory Pseudomonas aeruginosa urinary tract infection. J Med Microbiol 60(Pt 11):1697–1700

    Article  CAS  PubMed  Google Scholar 

  • Kim M et al (2014) Core lipopolysaccharide-specific phage SSU5 as an auxiliary component of a phage cocktail for Salmonella biocontrol. Appl Environ Microbiol 80(3):1026–1034

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Knezevic P et al (2013) Phage-antibiotic synergism: a possible approach to combatting Pseudomonas aeruginosa. Res Microbiol 164(1):55–60

    Article  CAS  PubMed  Google Scholar 

  • Koonin EV et al (2017) Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol 37:67–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koskella B, Brockhurst MA (2014) Bacteria–phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiol Rev 38(5):916–931

    Article  CAS  PubMed  Google Scholar 

  • Kropinski AM (2018) Practical advice on the one-step growth curve. Methods Mol Biol 1681:41–47

    Article  CAS  PubMed  Google Scholar 

  • Kumaran D et al (2018) Does treatment order matter? Investigating the ability of bacteriophage to augment antibiotic activity against Staphylococcus aureus biofilms. Front Microbiol 9:127

    Article  PubMed  PubMed Central  Google Scholar 

  • Kutateladze M (2015) Experience of the Eliava Institute in bacteriophage therapy. Virol Sin 30(1):80–81

    Article  PubMed  PubMed Central  Google Scholar 

  • Labrie SJ et al (2010) Bacteriophage resistance mechanisms. Nat Rev Microbiol 8(5):317–327

    Article  CAS  PubMed  Google Scholar 

  • Le S et al (2014) Chromosomal DNA deletion confers phage resistance to Pseudomonas aeruginosa. Sci Rep 4:4738

    Article  PubMed  PubMed Central  Google Scholar 

  • Lehman SM et al (2019) Design and preclinical development of a phage product for the treatment of antibiotic-resistant Staphylococcus aureus infections. Viruses 11(1):88

    Article  CAS  PubMed Central  Google Scholar 

  • Leite DMC et al (2018) Computational prediction of inter-species relationships through omics data analysis and machine learning. BMC Bioinf 19(14):420

    Article  CAS  Google Scholar 

  • León M, Bastías R (2015) Virulence reduction in bacteriophage resistant bacteria. Front Microbiol 6:343

    PubMed  PubMed Central  Google Scholar 

  • Leszczynski P et al (2006) Successful eradication of methicillin-resistant Staphylococcus aureus (MRSA) intestinal carrier status in a healthcare worker: case report. Folia Microbiol (Praha) 51(3):236–238

    Article  CAS  Google Scholar 

  • Letkiewicz S et al (2010) The perspectives of the application of phage therapy in chronic bacterial prostatitis. FEMS Immunol Med Microbiol 60(2):99–112

    Article  CAS  PubMed  Google Scholar 

  • Ligon BL (2004) Penicillin: its discovery and early development. Semin Pediatr Infect Dis 15(1):52–57

    Article  PubMed  Google Scholar 

  • Loc Carrillo C et al (2005) Bacteriophage therapy to reduce Campylobacter jejuni colonization of broiler chickens. Appl Environ Microbiol 71(11):6554–6563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luria SE, Delbruck M (1943) Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28(6):491–511

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lyon BJISG et al (2018) Salvage debridement, antibiotics and implant retention (“DAIR”) with local injection of a selected cocktail of bacteriophages: is it an option for an elderly patient with relapsing Staphylococcus aureus prosthetic-joint infection? Open Forum Infect Dis 5(11):ofy269

    Google Scholar 

  • Martin MJ et al (2015) Antibiotics overuse in animal agriculture: a call to action for health care providers. Am J Public Health 105(12):2409–2410

    Article  PubMed  PubMed Central  Google Scholar 

  • Maura D et al (2012) Intestinal colonization by enteroaggregative Escherichia coli supports long-term bacteriophage replication in mice. Environ Microbiol 14(8):1844–1854

    Article  CAS  PubMed  Google Scholar 

  • McCallin S et al (2013) Safety analysis of a Russian phage cocktail: from metagenomic analysis to oral application in healthy human subjects. Virology 443(2):187–196

    Article  CAS  PubMed  Google Scholar 

  • McCallin S et al (2018) Metagenome analysis of Russian and Georgian Pyophage cocktails and a placebo-controlled safety trial of single phage versus phage cocktail in healthy Staphylococcus aureus carriers. Environ Microbiol 20(9):3278–3293

    Article  CAS  PubMed  Google Scholar 

  • Meyer JR et al (2012) Repeatability and contingency in the evolution of a key innovation in phage lambda. Science 335(6067):428–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Międzybrodzki R et al (2012) Clinical aspects of phage therapy. In: Łobocka M, Szybalski W (eds) Advances in virus research, vol 83. Academic Press, Cambridge, MA, pp 73–121

    Google Scholar 

  • Mizoguchi K et al (2003) Coevolution of bacteriophage PP01 and Escherichia coli O157:H7 in continuous culture. Appl Environ Microbiol 69(1):170–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morello E et al (2011) Pulmonary bacteriophage therapy on Pseudomonas aeruginosa cystic fibrosis strains: first steps towards treatment and prevention. PLoS One 6(2):e16963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen F et al (2014) Tetracycline antibiotics and resistance mechanisms. Biol Chem 395(5):559–575

    Article  CAS  PubMed  Google Scholar 

  • Ning Y et al (2016) Time to positivity of blood culture and its prognostic value in bloodstream infection. Eur J Clin Microbiol Infect Dis 35(4):619–624

    Article  CAS  PubMed  Google Scholar 

  • Nouraldin AAM et al (2016) Bacteriophage-antibiotic synergism to control planktonic and biofilm producing clinical isolates of Pseudomonas aeruginosa. Alexandria J Med 52(2):99–105

    Article  Google Scholar 

  • O’Neil J (2016) Tackling drug–resistant infections globally: final report and recommendations

    Google Scholar 

  • Oechslin F (2018) Resistance development to bacteriophages occurring during bacteriophage therapy. Viruses 10(7):351

    Article  PubMed Central  CAS  Google Scholar 

  • Oechslin F et al (2016) Synergistic interaction between phage therapy and antibiotics clears Pseudomonas aeruginosa infection in endocarditis and reduces virulence. J Infect Dis 215(5):703–712

    PubMed Central  Google Scholar 

  • Parfitt T (2005) Georgia: an unlikely stronghold for bacteriophage therapy. Lancet 365(9478):2166–2167

    Article  PubMed  Google Scholar 

  • Park SC et al (2000) Isolation of bacteriophages specific to a fish pathogen, Pseudomonas plecoglossicida, as a candidate for disease control. Appl Environ Microbiol 66(4):1416–1422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pawlowski AC et al (2016) A diverse intrinsic antibiotic resistome from a cave bacterium. Nat Commun 7:13803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perry EB et al (2015) The molecular and genetic basis of repeatable coevolution between Escherichia coli and bacteriophage T3 in a laboratory microcosm. PLoS One 10(6):e0130639

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pirnay J-P et al (2012) Introducing yesterday’s phage therapy in today’s medicine. Futur Virol 7(4):379–390

    Article  CAS  Google Scholar 

  • Pouillot F et al (2012) Efficacy of bacteriophage therapy in experimental Sepsis and meningitis caused by a clone O25b:H4-ST131 Escherichia coli strain producing CTX-M-15. Antimicrob Agents Chemother 56(7):3568–3575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poullain V et al (2008) The evolution of specificity in evolving and coevolving antagonistic interactions between a bacteria and its phage. Evolution 62(1):1–11

    PubMed  Google Scholar 

  • Rammelkamp CH, Maxon T (1942) Resistance of Staphylococcus aureus to the action of penicillin. Proc Soc Exp Biol Med 51(3):386–389

    Article  CAS  Google Scholar 

  • Rohde C et al (2018) Expert opinion on three phage therapy related topics: bacterial phage resistance, phage training and prophages in bacterial production strains. Viruses 10(4):178

    Article  PubMed Central  CAS  Google Scholar 

  • Sarker SA et al (2016) Oral phage therapy of acute bacterial diarrhea with two coliphage preparations: a randomized trial in children from Bangladesh. EBioMedicine 4:124–137

    Article  PubMed  PubMed Central  Google Scholar 

  • Scanlan PD, Buckling A (2012) Co-evolution with lytic phage selects for the mucoid phenotype of Pseudomonas fluorescens SBW25. ISME J 6(6):1148–1158

    Article  CAS  PubMed  Google Scholar 

  • Schade SZ et al (1967) How bacteriophage chi attacks motile bacteria. J Virol 1(3):599–609

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scholl D et al (2001) Bacteriophage K1-5 encodes two different tail fiber proteins, allowing it to infect and replicate on both K1 and K5 strains of Escherichia coli. J Virol 75(6):2509–2515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scholl D et al (2005) Escherichia coli K1’s capsule is a barrier to bacteriophage T7. Appl Environ Microbiol 71(8):4872–4874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schooley RT et al (2017) Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob Agents Chemother 61(10):e00954-17

    Article  PubMed  PubMed Central  Google Scholar 

  • Scott AE et al (2007) Genome dynamics of Campylobacter jejuni in response to bacteriophage predation. PLoS Pathog 3(8):e119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seed KD et al (2012) Phase variable O antigen biosynthetic genes control expression of the major protective antigen and bacteriophage receptor in Vibrio cholerae O1. PLoS Pathog 8(9):e1002917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seed KD et al (2014) Evolutionary consequences of intra-patient phage predation on microbial populations. elife 3:e03497

    Article  PubMed  PubMed Central  Google Scholar 

  • Sklar IB, Joerger RD (2001) Attempts to utilize bacteriophage to combat Salmonella enterica Serovar entemtidis infection in chickens. J Food Saf 21(1):15–29

    Article  Google Scholar 

  • Smith HW, Huggins MB (1982) Successful treatment of experimental Escherichia coli infections in mice using phage: its general superiority over antibiotics. J Gen Microbiol 128(2):307–318

    CAS  PubMed  Google Scholar 

  • Smith HW, Huggins MB (1983) Effectiveness of phages in treating experimental Escherichia coli diarrhoea in calves, piglets and lambs. J Gen Microbiol 129(8):2659–2675

    CAS  PubMed  Google Scholar 

  • Smith HW et al (1987) The control of experimental Escherichia coli diarrhoea in calves by means of bacteriophages. Microbiology 133(5):1111–1126

    Article  CAS  Google Scholar 

  • Sørensen MCH et al (2012) Phase variable expression of capsular polysaccharide modifications allows Campylobacter jejuni to avoid bacteriophage infection in chickens. Front Cell Infect Microbiol 2:11

    Article  PubMed Central  CAS  Google Scholar 

  • Spanakis E, Horne MT (1987) Co-adaptation of Escherichia coli and coliphage lambda vir in continuous culture. J Gen Microbiol 133(2):353–360

    CAS  PubMed  Google Scholar 

  • Summers WC (2012) The strange history of phage therapy. Bacteriophage 2(2):130–133

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang PC et al (2017) Time-to-positivity of blood culture: an independent prognostic factor of monomicrobial Pseudomonas aeruginosa bacteremia. J Microbiol Immunol Infect 50(4):486–493

    Article  PubMed  Google Scholar 

  • Taylor CM, Roberts IS (2005) Capsular polysaccharides and their role in virulence. Contrib Microbiol 12:55–66

    Article  CAS  PubMed  Google Scholar 

  • Teng F et al (2009) Further characterization of the epa gene cluster and Epa polysaccharides of Enterococcus faecalis. Infect Immun 77(9):3759–3767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tengerdy RP et al (1967) Quantitative measurement of bacterial growth by the reduction of tetrazolium salts. Appl Microbiol 15(4):954–955

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tipper DJ et al (1965) Structure of the cell wall of Staphylococcus aureus, strain Copenhagen. III. Further studies of the disaccharides. Biochemistry 4(3):468–473

    Article  CAS  Google Scholar 

  • Torres-Barcelo C, Hochberg ME (2016) Evolutionary rationale for phages as complements of antibiotics. Trends Microbiol 24(4):249–256

    Article  CAS  PubMed  Google Scholar 

  • Torres-Barceló C et al (2014) A window of opportunity to control the bacterial pathogen Pseudomonas aeruginosa combining antibiotics and phages. PLoS One 9(9):e106628

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Uchiyama J et al (2017) Adsorption of Staphylococcus viruses S13’ and S24-1 on Staphylococcus aureus strains with different glycosidic linkage patterns of wall teichoic acids. J Gen Virol 98(8):2171–2180

    Article  CAS  PubMed  Google Scholar 

  • Ujmajuridze A et al (2018) Adapted bacteriophages for treating urinary tract infections. Front Microbiol 9:1832–1832

    Article  PubMed  PubMed Central  Google Scholar 

  • Villarroel J et al (2017) Metagenomic analysis of therapeutic PYO phage cocktails from 1997 to 2014. Viruses 9(11):328

    Article  PubMed Central  CAS  Google Scholar 

  • Weber-Dabrowska B et al (2000) Bacteriophage therapy of bacterial infections: an update of our institute’s experience. Arch Immunol Ther Exp 48(6):547–551

    CAS  Google Scholar 

  • Weber-Dabrowska B et al (2001) Bacteriophage therapy for infections in cancer patients. Clin Appl Immunol Rev 1(3):131–134

    Article  Google Scholar 

  • Weber-Dabrowska B et al (2003) Bacteriophages as an efficient therapy for antibiotic-resistant septicemia in man. Transplant Proc 35(4):1385–1386

    Article  CAS  PubMed  Google Scholar 

  • Wooten D et al (2018) Phage therapy for a multidrug-resistant Acinetobacter baumannii craniectomy site infection. Open Forum Infect Dis 5(4):ofy064

    PubMed  PubMed Central  Google Scholar 

  • Wright A et al (2009) A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin Otolaryngol 34(4):349–357

    Article  CAS  PubMed  Google Scholar 

  • Xia G et al (2011) Wall teichoic acid-dependent adsorption of staphylococcal siphovirus and myovirus. J Bacteriol 193(15):4006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasbin RE et al (1976) Bacteriophage resistance in Bacillus subtilis 168, W23, and interstrain transformants. J Bacteriol 125(3):1120–1126

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yen M et al (2017) A cocktail of three virulent bacteriophages prevents Vibrio cholerae infection in animal models. Nat Commun 8:14187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young FE (1967) Requirement of glucosylated teichoic acid for adsorption of phage in Bacillus subtilis 168. Proc Natl Acad Sci U S A 58(6):2377–2384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhvania P et al (2017) Phage therapy in a 16-year-old boy with Netherton syndrome. Front Med 4:94

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

McCallin, S., Oechslin, F. (2019). Bacterial Resistance to Phage and Its Impact on Clinical Therapy. In: Górski, A., Międzybrodzki, R., Borysowski, J. (eds) Phage Therapy: A Practical Approach. Springer, Cham. https://doi.org/10.1007/978-3-030-26736-0_3

Download citation

Publish with us

Policies and ethics