Skip to main content

Online Robust Fuzzy Clustering of Data with Omissions Using Similarity Measure of Special Type

  • Conference paper
  • First Online:
Lecture Notes in Computational Intelligence and Decision Making (ISDMCI 2019)

Abstract

The task of clustering is important and the most difficult part of the overall problem of Data Mining because it is based on the self-learning paradigm, i.e. implies the absence of pre-tagged training sample. In real conditions, this task is complicated by the fact that in having data arrays some of the observations can be corrupted by anomalous outliers and some - contain missing data, that is, the “object-property” table has “empty” cells. In addition, data can be arrive in online mode on processing, especially for tasks related with Data Stream Mining and Big Data. In the paper the problem of fuzzy adaptive online clustering of data distorted by outliers that are sequentially fed to the processing when the original sample volume and the number of distorted observations are apriori unknown is considered. The probabilistic and possibilistic adaptive online clustering algorithms for such data, that are based on the similarity measure of a special type that weaken or overwhelming outliers are proposed. The computational experiment confirms the effectiveness of approach under consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rutkowski L (2008) Computational intelligence: methods and techniques. Springer, Heidelberg

    Book  Google Scholar 

  2. Sepkovski JJ (1974) Quantified coefficients of association and measurement of similarity. J Int Assoc Math 6(2):135–152

    Article  Google Scholar 

  3. Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms. Plenum, New York

    Book  Google Scholar 

  4. Yang YK, Shieh HL, Lee CN (2004) Constructing a fuzzy clustering model based on its data distribution. In: International conference on computational intelligence for modeling, control and automation (CIMCA 2004), Gold Coast, Australia

    Google Scholar 

  5. Nikolova M (2004) A variational approach to remove outliers and impulse noise. J Math Imaging Vis 20(1–2):99–120

    Article  MathSciNet  Google Scholar 

  6. Davé RN, Sen S (1997) Noise clustering algorithm revisited. In: NAFIPS 1997, 21–24 September 1997, pp 199–204

    Google Scholar 

  7. Gabrys B, Bargiela A (2000) General fuzzy min-max neural network for clustering and classification. IEEE Trans Neural Netw 11(3):769–783

    Article  Google Scholar 

  8. Hathaway RJ, Bezdek JC, Hu Y (2000) Generalized fuzzy c-means clustering strategiesusing Lp norm distances. IEEE Trans Fuzzy Syst 8(5):576–582

    Article  Google Scholar 

  9. Davé RN, Sen S (2002) Robust fuzzy clustering of relational data. IEEE Trans Fuzzy Syst 10(6):713–727

    Article  Google Scholar 

  10. Comaniciu D, Meer P (2002) Mean shift: a robust approach toward features pace analysis. IEEE Trans Pattern Anal Mach Intell 24(5):603–619

    Article  Google Scholar 

  11. Dave RN, Krishnapuram R (1997) Robust cluatering methods: a unified view. IEEE Trans Fuzzy Syst 5(2):270–293

    Article  Google Scholar 

  12. Zhang J, Leung Y (2003) Robust clustering by pruning outliers. IEEE Trans Syst Man Cybern 33(6):983–999

    Article  Google Scholar 

  13. Ren LX, Irwin G (2003) Robust fuzzy Gustafson-Kessel clustering for nonlinear system identification. Int J Syst Sci 34(14–15):787–803

    Article  Google Scholar 

  14. Leski J (2003) Towards a robust fuzzy clustering. Fuzzy Sets Syst 137(2):215–233

    Article  MathSciNet  Google Scholar 

  15. Honda LK, Sugiura N, Ichihashi H (2003) Robust local principal component analyzer with fuzzy clustering. In: Proceedings of the international joint conference on neural networks, vol l, pp 732–737

    Google Scholar 

  16. Yang MS, Wu KL (2004) A similarity-based robust clustering method. IEEE Trans Pattern Anal Mach Intell 26(4):434–448

    Article  Google Scholar 

  17. Keller L, Krishnapuram R, Pal NR (2005) Fuzzy models and algorithms for pattern recognition and image processing. Springer, New York

    Google Scholar 

  18. Shafronenko A, Dolotov A, Bodyanskiy Y, Setlak G (2018) Fuzzy clustering of distorted observations based on optimal expansion using partial distances. In: 2018 IEEE second international conference on data stream mining and processing (DSMP), pp 327–330

    Google Scholar 

  19. Pal NR, Pal K, Keller JM et al (2005) A possibilistic fuzzy c-means clustering algorithm. IEEE Trans Fuzzy Syst 13(4):517–530

    Article  Google Scholar 

  20. Kokshenev I, Bodyanskiy Y, Gorshkov Y, Kolodyazhniy V (2006) Outlier resistant recursive fuzzy clustering algorithm. In: Reusch B (ed) Computational intelligence: theory and application. Advances in soft computing, vol 38. Springer, Heidelberg, pp 647–652

    Google Scholar 

  21. Cai W, Chen S, Zhang D (2007) Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recogn 40(3):825–838

    Article  Google Scholar 

  22. Banerjee (2009) Robust fuzzy clustering as a multi-objective optimization procedure. In: Proceeding soft the 28th annual meeting of the North American fuzzy information processing society (NAFIPS 2009), June 2009

    Google Scholar 

  23. Bezdek JC (2013) Pattern recognition with fuzzy objective function algorithms. Springer, New York

    Google Scholar 

  24. Ji Z, Liu J, Cao G, Sun Q, Chen Q (2014) Robust spatially constrained fuzzy c-means algorithm for brain MR image segmentation. Pattern Recogn 47:2454–2466

    Article  Google Scholar 

  25. Krinidisand S, Chatzis V (2010) A robust fuzzy local information c-means clustering algorithm. IEEE Trans Image Process 19(5):1328–1337

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yevgeniy Bodyanskiy , Alina Shafronenko or Sergii Mashtalir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bodyanskiy, Y., Shafronenko, A., Mashtalir, S. (2020). Online Robust Fuzzy Clustering of Data with Omissions Using Similarity Measure of Special Type. In: Lytvynenko, V., Babichev, S., Wójcik, W., Vynokurova, O., Vyshemyrskaya, S., Radetskaya, S. (eds) Lecture Notes in Computational Intelligence and Decision Making. ISDMCI 2019. Advances in Intelligent Systems and Computing, vol 1020. Springer, Cham. https://doi.org/10.1007/978-3-030-26474-1_44

Download citation

Publish with us

Policies and ethics